

Lecture Notes in Computer Science 4510
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pascal Van Hentenryck Laurence Wolsey (Eds.)

Integration
of AI and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

4th International Conference, CPAIOR 2007
Brussels, Belgium, May 23-26, 2007
Proceedings

13

Volume Editors

Pascal Van Hentenryck
Brown University
Box 1910, Providence, RI 02912, USA
E-mail: pvh@cs.brown.edu

Laurence Wolsey
Université catholique de Louvain
34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium
E-mail: wolsey@core.ucl.ac.be

Library of Congress Control Number: 2007926618

CR Subject Classification (1998): G.1.6, G.1, G.2.1, F.2.2, I.2, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72396-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72396-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12061068 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at CP-AI-OR 2007: The Fourth In-
ternational Conference on Integration of Artificial Intelligence, Constraint Pro-
gramming, and Operations Research Techniques for Combinatorial Optimization
Problems held May 23–26, 2007 in Brussels, Belgium. More information about
the conference can be found at the Web site:

http://www.cs.brown.edu/sites/cpaior07/Welcome.html.

There were 80 submissions and each submission was reviewed by at least three
Program Committee members. After careful consideration and discussion, the
committee decided to accept 28 papers (one of which was withdrawn just be-
fore the publication of the proceedings). The papers submitted this year were
of high quality and representative of a vibrant, multi-disciplinary community
at the intersection of artificial intelligence, constraint programming, and opera-
tions research. The program also included three invited talks and two tutorials.
We were extremely pleased that Claude Le Pape, George Nemhauser, and Bart
Selman accepted our invitation to be invited speakers at the conference. Simi-
larly, we were very fortunate to attract Thierry Benoist and John Chinneck to
give tutorials at CP-AI-OR 2007. The conference was also preceded by a Master
Class on constraint-based scheduling organized by Amedeo Cesta.

We would like to thank the Program Committee members who worked hard
to produce high-quality reviews for the papers under tight deadlines, as well as
the reviewers involved in the paper selection. We also would like to acknowl-
edge the contributions of Laurent Michel (Publicity Chair), Barry O’Sullivan
(Sponsorship Chair), Susanne Heipcke and Michael Juenger (Academic and In-
dustrial Liaison Chairs), and Etienne Loute (Conference Co-chair) to the success
of CP-AI-OR 2007. It is also a great pleasure to thank Fabienne Henry for her
tremendous help in organizing the conference. The submissions, reviews, discus-
sions, and the preparation of the proceedings were all handled by the EasyChair
system. Finally, we would also like to thank the sponsors of the conference:
The Association for Constraint Programming, the Cork Constraint Computation
Centre (Ireland), ILOG S.A. (France), the Intelligent Information Systems Insti-
tute at Cornell University (USA), the European Commission (through the Marie
Curie Research Training Network: ADONET), the Fonds National de Recherche
Scientifique in Belgium, the Belgian Science Policy, ORBEL (Master Class), as
well as Brown University (USA), the Facultés St. Louis (Brussels, Belgium) and
the Université catholique de Louvain (Louvain-la-Neuve, Belgium).

March 2007 Pascal Van Hentenryck
Laurence Wolsey

Conference Organization

Program Chairs

Pascal Van Hentenryck
Laurence Wolsey

Local Organization

Etienne Loute, Facultés Universitaires de Saint-Louis, Brussels, Belgium
Laurence Wolsey, Université catholique de Louvain, Louvain-La-Neuve, Belgium

Program Committee

Philippe Baptiste
Chris Beck
Frederic Benhamou
Mats Carlsson
Amedeo Cesta
John Chinneck
Andrew Davenport
Rina Dechter
Yves Deville
Hani El Sakkout
Bernard Gendron
Carla Gomes
John Hooker
Stefan Karish
Andrea Lodi
Laurent Michel
Michela Milano
Yehuda Naveh
Barry O’Sullivan
Jean-Francois Puget
Jean-Charles Régin
Andrea Roli
Louis-Martin Rousseau
Michel Rueher
Martin Savelsbergh
Meinolf Sellmann
David Shmoys
Helmut Simonis

VIII Organization

Barbara Smith
Stephen Smith
Peter Stuckey
Michael Trick
Mark Wallace
Willem-Jan van Hoeve

External Reviewers

Ionut Aron
Christian Artigues
Gregory Barlow
Marco Benedetti
John Betts
Eyal Bin
Pierre Bonami
Sebastian Brand
Marie-Claude Côté
Emilie Danna
Sophie Demassey
Bistra Dilkina
Nizar El Hachemi
Dominique Feillet
Felix Geller
Carmen Gervet
Vibhav Gogate
Tarik Hadzic
Jin-Kao Hao
Shlomo Hoory
Ayoub Insea Correa
Manuel Iori
Kalev Kask
Serge Kruk
Yahia Lebbah
Bernd Meyer
Claude Michel

Jean-Noël Monette
Bertrand Neveu
Angelo Oddi
Gilles Pesant
Federico Pecora
Lam Phuong
Nicola Policella
Jakob Puchinger
Luis Queseda
Claude-Guy Quimper
Yossi Richter
Ashish Sabharwal
Frederic Saubion
Pierre Schaus
Stefano Smriglio
Christine Solnon
Peter Stuckey
Daria Terekhov
Andrea Tramontani
Gilles Trombettoni
Charlotte Truchet
Jeremie Vautard
Petr Vilim
Toby Walsh
Stéphane Zampelli
Terry Zimmerman

Table of Contents

Minimum Cardinality Matrix Decomposition into Consecutive-Ones
Matrices: CP and IP Approaches . 1

Davaatseren Baatar, Natashia Boland, Sebastian Brand, and
Peter J. Stuckey

Connections in Networks: Hardness of Feasibility Versus Optimality 16
Jon Conrad, Carla P. Gomes, Willem-Jan van Hoeve,
Ashish Sabharwal, and Jordan Suter

Modeling the Regular Constraint with Integer Programming 29
Marie-Claude Côté, Bernard Gendron, and Louis-Martin Rousseau

Hybrid Local Search for Constrained Financial Portfolio Selection
Problems . 44

Luca Di Gaspero, Giacomo di Tollo, Andrea Roli, and Andrea Schaerf

The “Not-Too-Heavy Spanning Tree” Constraint . 59
Grégoire Dooms and Irit Katriel

Eliminating Redundant Clauses in SAT Instances . 71
Olivier Fourdrinoy, Éric Grégoire, Bertrand Mazure, and
Lakhdar Säıs

Cost-Bounded Binary Decision Diagrams for 0–1 Programming 84
Tarik Hadžić and J.N. Hooker

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 99
Wafa Karoui, Marie-José Huguet, Pierre Lopez, and Wady Naanaa

A Global Constraint for Total Weighted Completion Time 112
András Kovács and J. Christopher Beck

Computing Tight Time Windows for RCPSPWET with the
Primal-Dual Method . 127

András Kéri and Tamás Kis

Necessary Condition for Path Partitioning Constraints 141
Nicolas Beldiceanu and Xavier Lorca

A Constraint Programming Approach to the Hospitals / Residents
Problem . 155

David F. Manlove, Gregg O’Malley,
Patrick Prosser, and Chris Unsworth

Best-First AND/OR Search for 0/1 Integer Programming 171
Radu Marinescu and Rina Dechter

A Position-Based Propagator for the Open-Shop Problem 186
Jean-Noël Monette, Yves Deville, and Pierre Dupont

X Table of Contents

Directional Interchangeability for Enhancing CSP Solving 200
Wady Naanaa

A Continuous Multi-resources cumulative Constraint with
Positive-Negative Resource Consumption-Production 214

Nicolas Beldiceanu and Emmanuel Poder

Replenishment Planning for Stochastic Inventory Systems with
Shortage Cost . 229

Roberto Rossi, S. Armagan Tarim, Brahim Hnich, and
Steven Prestwich

Preprocessing Expression-Based Constraint Satisfaction Problems for
Stochastic Local Search . 244

Sivan Sabato and Yehuda Naveh

The Deviation Constraint . 260
Pierre Schaus, Yves Deville, Pierre Dupont, and Jean-Charles Régin

The Linear Programming Polytope of Binary Constraint Problems with
Bounded Tree-Width . 275

Meinolf Sellmann, Luc Mercier, and Daniel H. Leventhal

On Boolean Functions Encodable as a Single Linear Pseudo-Boolean
Constraint . 288

Jan-Georg Smaus

Solving a Stochastic Queueing Control Problem with Constraint
Programming . 303

Daria Terekhov and J. Christopher Beck

Constrained Clustering Via Concavity Cuts . 318
Yu Xia

Bender’s Cuts Guided Large Neighborhood Search for the Traveling
Umpire Problem . 332

Michael A. Trick and Hakan Yildiz

A Large Neighborhood Search Heuristic for Graph Coloring 346
Michael A. Trick and Hakan Yildiz

Generalizations of the Global Cardinality Constraint for Hierarchical
Resources . 361

Alessandro Zanarini and Gilles Pesant

A Column Generation Based Destructive Lower Bound for Resource
Constrained Project Scheduling Problems . 376

J. Marjan van den Akker, Guido Diepen, and J.A. Hoogeveen

Author Index . 391

Minimum Cardinality Matrix Decomposition

into Consecutive-Ones Matrices: CP and IP
Approaches

Davaatseren Baatar1, Natashia Boland1, Sebastian Brand2,
and Peter J. Stuckey2

1 Department of Mathematics, University of Melbourne, Australia
2 NICTA Victoria Research Lab, Department of Comp. Sci. and Soft. Eng.

University of Melbourne, Australia

Abstract. We consider the problem of decomposing an integer ma-
trix into a positively weighted sum of binary matrices that have the
consecutive-ones property. This problem is well-known and of practical
relevance. It has an important application in cancer radiation therapy
treatment planning: the sequencing of multileaf collimators to deliver
a given radiation intensity matrix, representing (a component of) the
treatment plan.

Two criteria characterise the efficacy of a decomposition: the beam-
on time (length of time the radiation source is switched on during the
treatment), and the cardinality (the number of machine set-ups required
to deliver the planned treatment).

Minimising the former is known to be easy. However finding a decom-
position of minimal cardinality is NP-hard. Progress so far has largely
been restricted to heuristic algorithms, mostly using linear program-
ming, integer programming and combinatorial enumerative methods as
the solving technologies. We present a novel model, with correspond-
ing constraint programming and integer programming formulations. We
compare these computationally with previous formulations, and we show
that constraint programming performs very well by comparison.

1 Introduction

The problem of decomposing an integer matrix into a weighted sum of binary
matrices has received much attention in recent years, largely due to its applica-
tion in radiation treatment for cancer.

Intensity-modulated radiation therapy (IMRT) has been increasingly used for
the treatment of a variety of cancers [17]. This treatment approach employs two
devices that allow higher doses of radiation to be administered to the tumour,
while decreasing the exposure of sensitive organs (Fig. 1). The first is that the
source of radiation can be rotated about the body of the patient: by positioning
the tumour at a “focal point”, and aiming the radiation beam at this point
from various angles, the tumour receives a high dose from all angles, while the
surrounding tissue only gets high exposure from some angles.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 D. Baatar et al.

2D transaxial slice of the body

Organs at risk

Target

volume

Beam head

Fig. 1. Intensity-modulated radiotherapy

The second is more subtle, and involves repeated exposures from the same
angle, where the uniform-intensity rectangular field of radiation delivered by the
radiation source is “shaped” in a different way for each exposure, and each expo-
sure can be for a different length of time. This process builds up a complex profile
of received radiation in the patient’s body, effectively converting the uniform ra-
diation field delivered by the machine to an intensity-modulated field. The latter
is usually described by discretising the 2-dimensional rectangular field, and spec-
ifying a radiation intensity level in each discrete element, representing the total
length of time for which that element should be exposed to radiation.

A treatment plan for a single IMRT treatment session with a patient thus
typically consists of a set of angles, together with a matrix for each angle, known
as the intensity matrix, which represents the modulated field to be delivered at
that angle. Typically the intensity is scaled so that the entries in the intensity
matrix are integer. Indeed, they are usually quite small integers. Finding a good
treatment plan is a challenging problem in its own right, and has been the subject
of a great deal of research. We recommend the reader refer to the papers [13,9,15]
and references therein.

In this paper, we assume a treatment plan is given, and focus on the
delivery of the modulated field (intensity matrix) at a given angle. IMRT can be

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 3

delivered by a variety of technologies: here we focus on its delivery via a machine
known as a multileaf collimator, operating in “step-and-shoot” mode [7]. This
machine delivers a rectangular field of radiation, of uniform intensity, that can
be shaped through partial occlusion of the field by lead rods, or “leaves”. These
are positioned horizontally on the left and right side of the field, and can slide
laterally across the field to block the radiation, and so shape the field. The
discretisation giving rise to the intensity matrix is taken to be compatible with
the leaf widths. In step-and-shoot mode, the leaves are moved into a specified
position, the radiation source switched on for a specified length of time and then
switched off, the leaves moved to a new position, and so on (Fig. 1).

The shaped radiation field delivered by the leaves in each position can be
represented as a binary matrix, with 1’s in elements exposed in that position,
and 0’s in elements covered by the leaves (Fig. 1). The structure of the machinery
ensures that all 1’s in any row occur in a consecutive sequence: the matrix has the
consecutive-ones property. The length of time radiation is applied to the shaped
field is called its beam-on time. To correctly deliver the required intensity matrix,
the matrices corresponding to the shaped fields, weighted with their beam-on
times, must sum to the intensity matrix.

This motivates the following problem specification.

2 Problem Specification and Related Work

Let I be an m × n matrix of non-negative integers (the intensity matrix). The
problem is to find a decomposition of I into a positive linear combination of
binary matrices that have the consecutive-ones property. Often the radiation
delivery technology imposes other constraints on the matrices, but here we focus
on the simplest form, in which only the consecutive-ones property is required. For
convenience, we use the abbreviation C1 for a binary consecutive-ones matrix.
We also refer to a shaped field, represented by a C1 matrix, as a pattern.

Formally, we seek positive integer coefficients bk (the beam-on times) and C1
matrices Xk (the patterns), such that

I =
∑

k∈Ω

bkXk (1)

where Ω is the index set of the binary matrices Xk, and for k ∈ Ω:

Xk,i,jL = 1 ∧ Xk,i,jR = 1 → Xk,i,jM = 1 (2)

for all 1 � jL < jM < jR � n and all i = 1, . . . , m.

Example 1. Consider the matrix

I =
(

2 5 3
3 5 2

)
.

4 D. Baatar et al.

Two decompositions are

D1 = 1
(

0 1 1
1 1 0

)
+ 2

(
1 1 1
1 1 1

)
+ 2

(
0 1 0
0 1 0

)
and

D2 = 2
(

1 1 0
0 1 1

)
+ 3

(
0 1 1
1 1 0

)
,

that is, we have I = D1 = D2. ♦
We denote by B and K the sum of coefficients bk and the number of matrices
Xk used in the decomposition (1), respectively, i.e.

B =
∑

k∈Ω

bk and K = |{ bk | k ∈ Ω }| .

We call B the total beam-on time and K the cardinality of the decomposition.
The efficacy of a decomposition is characterised by its values for B and K: the
smaller these values the better. In Example 1, the decompositions have the values
B1 = B2 = 5, K1 = 3 and K2 = 2; so D2 is preferred.

The problem of finding a decomposition that minimises B can be solved
in polynomial time using linear programming or combinatorial algorithms
[1,8,10,3]. However, it is possible for a decomposition to have minimal B but
large K; indeed algorithms for minimising B tend to produce solutions with
much larger K values than is necessary.

In radiation therapy, clinical practitioners would prefer solutions that min-
imise B, while ensuring K is as small as possible, i.e. they would prefer a lex-
icographically minimum solution, minimising B first and then K, written as
lex min(B, K). Since minimising B is easy, its minimal value, which we denote
by B∗, is readily computable. The problem then becomes one of minimising K
subject to the constraint that B = B∗. Although this problem, too, is NP-hard
(it follows directly from the proof of NP-hardness of the problem of minimising
K alone, given in [3]), it is hoped that solution methods effective in practice can
be developed.

In the last decade, dozens of heuristic algorithms have indeed been developed,
for example [1,8,10,6,3]; approximation algorithms are studied in [4]. Some of
these attempt to find solutions in which both B and K are “small”, while some
seek low cardinality solutions while ensuring B = B∗ is fixed. An exact algo-
rithm for the lex min(B, K) problem has also been developed [10]: it is a highly
complex, specialised enumerative algorithm that appears to carry out similar
steps to those that might be expected in a constraint programming approach.

However the development of tractable exact formulations has lagged behind.
Several exact integer programming models were introduced in [2] and [11] in
order to solve the lex min(B, K) problem, but these were either not tested com-
putationally or were able to solve only small problems in reasonable CPU time.
In this paper we develop a new model, that we refer to as the Counter Model. We
derive both an integer programming formulation and a constraint programming
method, and test both of these computationally against previous integer pro-
gramming models. Our integer programming formulation performs substantially

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 5

better than existing formulations, and the constraint programming approach
provides the best computational results overall.

In the remainder of this paper, we first briefly review the existing integer
programming formulations, and then present the Counter Model, our new integer
programming formulation, and our constraint programming method. We then
provide a computational comparison of these, and make our conclusions.

3 Existing Integer Programming Formulations

The central issue in modelling the lex min(B, K) problem is that K, the car-
dinality of the decomposition, is unknown, and yet the natural variable indices
depend on it. The two integer linear programming models in the current litera-
ture that can be used for the lex min(B, K) problem take different approaches
in tackling this issue. [11] overcome it by indexing according to radiation units;
[2] instead calculates an upper bound on K. Here we give descriptions of these
models and some additional symmetry breaking constraints.

Notation. The range expression [a..b] with integers a, b denotes the integer set
{ e | a � e � b }.

3.1 The Unit Radiation Model

The model of [11] focuses on individual units of radiation. It is based on the
assumption that the total beam-on time is fixed, in our case to B∗. What is not
known is: for each of the B∗ units of radiation, what pattern should be used for
the delivery of that unit? In the model, binary variables dt,i,j are used to indicate
whether the element (i, j) is exposed in the tth pattern corresponding to the tth
unit of radiation, for t ∈ [1..B∗]. They are linked to the intensity matrix by

Iij =
B∗∑

t=1

dt,i,j , for all i ∈ [1..m], j ∈ [1..n]. (3)

The leaf structure in the pattern is captured by binary variables:

pt,i,j =

{
1 if the right leaf in row i of pattern t covers column j,
0 otherwise,

�t,i,j =

{
1 if the left leaf in row i of pattern t covers column j,
0 otherwise,

for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n]. The relationship between these three
sets of binary variables is given by

pt,i,j + �t,i,j = 1 − dt,i,j for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n], (4)

6 D. Baatar et al.

and

pt,i,j � pt,i,j+1,

�t,i,j+1 � �t,i,j

for all t ∈ [1..B∗], i ∈ [1..m], j ∈ [1..n − 1]. (5)

These constraints ensure that the dt induce a C1 matrix.
Under these constraints, the indices t can be permuted to create equivalent

solutions. Thus, the model is “free” to order the patterns so that identical pat-
terns appear consecutively. To minimise the number of different patterns in a
solution, the number of times adjacent patterns are different can be minimised.
That patterns t and t + 1 differ is reflected in the binary variable gt, and the
sum of these variables corresponds to the number of patterns by

K = 1 +
B∗−1∑

t=1

gt. (6)

Minimising this sum ensures that identical patterns appear consecutively. Each
unique pattern yields a C1 matrix for the decomposition; the associated beam-
on time is given by the number of copies of this pattern among the dt. [11] tally
values for g using binary additional variables:

ct,i,j =

{
1 if dt,i,j = 1 and dt+1,i,j = 0,

0 otherwise,

ut,i,j =

{
1 if dt,i,j = 0 and dt+1,i,j = 1,

0 otherwise,

st,i,j =

{
1 if dt,i,j �= dt+1,i,j ,

0 otherwise,

for all t ∈ [1 .. B∗ − 1], i ∈ [1..m], j ∈ [1..n]. The relationship of these variables
is established by the linear constraints

− ct,i,j � dt+1,i,j − dt,i,j � ut,i,j ,

ut,i,j + ct,i,j = st,i,j ,
m∑

i=1

n∑

j=1

st,i,j � mngt,

for all t ∈ [1 .. B∗ − 1], i ∈ [1..m], j ∈ [1..n].

(7)

The original model in [11] does not contain symmetry-breaking constraints.
We added symmetry breaking constraints as follows. We wish to enforce that
the matrices appear in order of non-increasing beam-on time. This means the
pattern groups should appear in order of non-increasing size, which is to say
that no (possibly empty) sequence of 0’s enclosed by 1’s and followed by a longer

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 7

sequence of 0’s occurs in the g vector extended by g0 = 1. This can be enforced
by

r+t∑

v=r

gv − 1 �
r+2t∑

v=r+t+1

gv for all r ∈ [0 .. B∗ − 3], t ∈ [1 .. �(B∗ − r − 1)/2�], (8)

for which we define g0 = 1.
The constraints (3)-(8) with the objective of minimising K constitute the Unit

Radiation model.

3.2 The Leaf-Implicit Model

This model of [2] is based on calculating an upper bound on K, denoted by
K̄. A value for K̄ is not difficult to compute; the cardinality of any solution to
the (polynomially solvable) minimum beam-on time problem will do. For each
k ∈ [1..K̄], a C1 matrix Xk and associated beam-on time bk need to be found. If
Xk is the zero matrix then pattern k is not needed; minimising decomposition
cardinality is minimising the number of non-zero matrices in the decomposition.

The model of [2] uses a characterisation of matrix decomposition into C1
matrices derived in [3]. In this model, the structure of the solution is encoded
by recording beam-on time against each leaf position. It uses integer variables
xk,i,j to represent the beam-on time for pattern k if the left leaf in row i of that
pattern covers exactly the columns [0 .. j − 1]; otherwise xk,i,j is zero. The left
leaf being in position 0 means it is fully retracted. Similarly, the integer variable
yk,i,j represents the beam-on time for pattern k if the right leaf in row i of that
pattern covers exactly the columns [j .. n + 1], and is zero otherwise. The right
leaf “covering” only column n + 1 means it is fully retracted. For convenience,
we define the function inc to compute the non-negative difference between two
values,

inc(x, y) = max(y − x, 0),

and the matrices Δ+, Δ− are defined by

Δ+
i,j = inc(Ii,j−1, Ii,j),

Δ−
i,j = inc(Ii,j , Ii,j−1),

for all j ∈ [1..n + 1], i ∈ [1..m], where we take Ii,0 = Ii,n+1 = 0. Delivering the
intensity matrix I is equivalent to asking that

K̄∑

k=1

xk,i,j − wi,j = Δ+
i,j and

K̄∑

k=1

yk,i,j − wi,j = Δ−
i,j ,

for all i ∈ [1..m], j ∈ [1 .. n + 1], (9)

8 D. Baatar et al.

where the wi,j are non-negative integer variables. That the total beam-on time
is B∗ is ensured using integer variables bk constrained by

n+1∑

j=1

xk,i,j = bk and
n+1∑

j=1

yk,i,j = bk, for all k ∈ [1..K̄], i ∈ [1..m], (10)

and
K̄∑

k=1

bk = B∗. (11)

Counting the number of patterns is similarly encoded against leaf positions.
The model uses binary variables �k,i,j to represent whether the left leaf in row i
of pattern k covers exactly columns [0 ..j−1], and rk,i,j to represent whether the
right leaf in row i of pattern k covers exactly columns [j ..n+1]. Further, binary
variables βk indicate whether pattern k is used at all. The pattern structure is
enforced by the constraints

n+1∑

j=1

�k,i,j = βk and
n+1∑

j=1

rk,i,j = βk, for all k ∈ [1..K̄], i ∈ [1..m], (12)

and, ensuring that the left leaf is indeed to the left of the right leaf,
s∑

j=1

�k,i,j −
s∑

j=1

rk,i,j � 0, for all s ∈ [1 .. n + 1], k ∈ [1..K̄], i ∈ [1..m]. (13)

If pattern k is not used, then it cannot supply any radiation. This logic is
encoded via the constraints

xk,i,j � M+
k,i,j�k,i,j and yk,i,j � M−

k,i,jrk,i,j ,

for all s ∈ [1..K̄], i ∈ [1..m], j ∈ [1 .. n + 1], (14)

where M+
k,i,j , M−

k,i,j are any appropriate upper bounds. We use

M◦
k,i,j = B∗ −

n+1∑

s=1

Δ+
i,s + Δ◦

i,j , for ◦ ∈ {+, −}.

The decomposition cardinality is found by

K =
K̄∑

k=1

βk. (15)

The description of the original model in [2] does not discuss symmetry break-
ing. To make the comparison with the other models fairer, we add the following
symmetry breaking constraints. In a closed row, the leaves can meet anywhere.
We choose the point at which the left leaf is fully retracted, by requiring

�k,i,j + rk,i,j � 1, for all i ∈ [1..m], j ∈ [2 .. n + 1]. (16)

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 9

Furthermore, we order the beam-times associated to the patterns,

b1 � . . . � bK̄ . (17)

Unfortunately, symmetry-breaking constraint (17) does not remove symmetries
arising when the coefficients of two of the Xk matrices are equal. Sometimes,
values can be swapped between matrices without breaking their consecutive-ones
properties. Consider a fragment of D2 from Example 1:

2
(

1 1 1
1 1 1

)
+ 2

(
0 1 0
0 1 0

)
= 2

(
1 1 1
1 1 0

)
+ 2

(
0 1 0
0 1 1

)
.

Note that the matrices of left-hand side and right-hand side are both lexico-
graphically ordered (row-wise as well as column-wise).

In summary, the Leaf-Implicit model consists of the constraints (9)-(17) with
the objective of minimising K.

4 New Constraint Programming and Integer
Programming Approaches

The problem specification gives rise to a number of interesting models. Our
interest is to compare models in combination with solving techniques. Although
we try to model solver-independently, we need to get specific eventually, so we
target integer linear programming (IP) solvers on the one hand, and constraint
programming (CP) solvers (allowing arbitrary constraints) on the other.

We first discuss the most direct model that could be derived from the formu-
lation, as a CP model. Clearly this has a number of drawbacks, such as a great
deal of symmetry, so we go on to develop a compact model, useful for both IP
and CP, in which much of the symmetry is eliminated.

4.1 The Direct CP Model

The problem specification can almost directly be interpreted as a CP model. The
decision variables are the binary variables Xk,i,j and the positive integer variables
bk. Requirement (1) is a linear equality constraint. Requirement (2) corresponds
to the contiguity constraint studied in [12]. The critical point is that the number
of variables depends on K. Hence, as in the Leaf-Implicit model, we need to
make use of an upper bound K̄ on K and program the search to try increasing
values of K.

The great deal of symmetries permitted by the Direct model is a drawback.
We can add (17) to remove some of the symmetries, and indeed some CP systems
provide support for the combination of the constraints in (11) and (17), yielding
stronger constraint propagation, e.g. the ordered sum constraint of ECLiPSe

[16]. Still, as we have seen, many symmetries remain.

10 D. Baatar et al.

4.2 The Counter Model

This novel model is based on counting the patterns according to their beam-on
times. We use non-negative integer variables Qb,i,j to represent the number of
patterns that have associated beam-on time b and expose the element (i, j). An
upper bound b̄ on the beam-on times is thus needed. It is easy to see that the
maximum intensity, i.e. the largest value in I, is such a bound. The link between
the Qb,i,j variables and the intensity matrix is

b̄∑

b=1

bQb,i,j = Ii,j , for all i ∈ [1..m], j ∈ [1..n]. (18)

To derive a C1 decomposition of I from Q satisfying the above constraint,
we must take a C1 decomposition of Qb for each b. The C1 matrices in the
decompositions of Qb each have a multiplicity given by the number of times
they occur in the decomposition of Qb.

We claim that we can restrict our attention to decompositions of Qb in which
the multiplicities are all precisely 1. Imagine to the contrary a decomposition of I
into C1 matrices X1, . . . , XK with respective weights b1, . . . , bK such that Xi =
Xj for some i, j with 1 � i < j � K. Then we can construct a smaller cardinality
solution, by replacing biXi + bjXj by a single C1 matrix Xi with weight bi + bj .
This results in a decomposition of I with strictly smaller cardinality. Hence in any
minimal cardinality decomposition of I there are no repeated C1 matrices. Hence
in any minimal cardinality decomposition of I all matrices in the decompositions
of Qb have unit multiplicity.

For example, consider the following decomposition of I = (2 4 3
3 4 2), which has

non-unit multiplicity in the decomposition of Q1:

1

⎧
⎨

⎩

X1(
0 1 0
0 1 0

)
+

X2(
0 1 0
0 1 0

)
+

X3(
0 0 1
1 0 0

)⎫
⎬

⎭ + 2

X4(
1 1 1
1 1 1

)
= 1

Q1(
0 2 1
1 2 0

)
+ 2

Q2(
1 1 1
1 1 1

)
.

Here X1 = X2, so we can replace these by a single matrix in the decomposition
with weight b1 + b2 = 2. The new decomposition and the resulting Qb matrices,
Q′

1 and Q′
2, are:

1

X1(
0 0 1
1 0 0

)
+ 2

⎧
⎨

⎩

X2(
1 1 1
1 1 1

)
+

X3(
0 1 0
0 1 0

)⎫
⎬

⎭ = 1

Q′
1(

0 0 1
1 0 0

)
+ 2

Q′
2(

1 2 1
1 2 1

)
.

From the above reasoning, we can assume that decompositions of Qb into
C1 matrices, each with unit weight, exist. So we have created a simpler form
of the original problem. Instead of looking for a weighted decomposition of I,
we seek an unweighted decomposition of each Qb. We introduce non-negative
integer variables Nb to represent the cardinality of the decomposition of Qb, for
each b ∈ [1..b̄]. As we have argued, we may assume Nb is also the sum of weights
for the minimum sum of weights decomposition of Qb.

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 11

A convenient formula for the minimum sum of weights of a C1 decomposition
is given in [8,3]. The idea is as follows. The decomposition of any general non-
negative integer row vector V with m elements into positive integer-weighted C1
matrices (row vectors) must satisfy the property that for all j ∈ [1..m], the sum
of weights applied to C1 matrices that expose element j but not j − 1 must be
exactly Vj − Vj−1 in the case that this is non-negative, and zero otherwise, i.e.
must be exactly inc(Vj−1, Vj), where we define V0 = 0. Each nonzero C1 matrix
in the decomposition must have a first element equal to one; i.e. there must be
some element j ∈ [1..n] with j − 1 not exposed. So the sum of weights applied
to nonzero C1 matrices in the decomposition must be

∑n
j=1 inc(Vj−1, Vj). This

observation extends to an m × n non-negative integer matrix G. It is straight-
forward to show that any decomposition of G into non-zero C1 matrices has a
sum of weights equal to the maximum over i ∈ [1..m] of

n∑

j=1

inc(Gi,j−1, Gi,j) (�)

where we define Gi,0 = 0 for all i ∈ [1..m]. Indeed, this quantity minimises the
sum of weights over all decompositions of G into C1 matrices.

Thus, we can calculate Nb by finding the smallest Nb satisfying

Nb �
n∑

j=1

inc(Qb,i,j−1, Qb,i,j), for all i ∈ [1..m], (19)

where we define Qb,i,0 = 0, for all b and i.
To summarise, the variables Nb represent the number of patterns that have

associated beam-on time of b, and the matrix Qb encodes the C1 matrices in the
decomposition of I that should be given weight b. In other words, the matrix Qb

should itself decompose into (a sum of) Nb C1 matrices, each of which appears in
the decomposition of I with weight b. Since we can restrict our attention to the
decompositions of Qb with unit multiplicities, the cardinality of the decomposi-
tion of Qb is precisely the sum of the multiplicities. Furthermore, since we seek
to minimise the cardinality of the solution, we can take Nb to be the minimum
sum of multiplicities over C1 decompositions of Qb, i.e. Nb can be related to Qb

via (19). The cardinality of a decomposition corresponding to N and Q is given
by

K =
b̄∑

b=1

Nb, (20)

and for the total beam-on time we find

B∗ =
b̄∑

b=1

bNb. (21)

The Counter model thus consists of the constraints (18)-(21) with the objective
of minimising K.

12 D. Baatar et al.

The Counter Model with Integer Programming. To express the Counter
Model as an IP, the nonlinear constraint (19), involving max expressions, needs
to be linearised. We do this by replacing the inc expressions in (19), that is,
max(Qb,i,j − Qb,i,j−1, 0), by new variables Sb,i,j constrained by

Sb,i,j � Qb,i,j − Qb,i,j−1,

Sb,i,j � 0,
for all b ∈ [1..b̄], i ∈ [1..m], j ∈ [1 .. n + 1]. (22)

This transformation is correct since K and hence the (non-negative) Nb and
Sb,i,j are minimised.

The Counter Model with Constraint Programming. The Counter
Model is directly implementable in CP systems that provide linear arithmetic
constraints and the max constraint. The constraints (19) will usually be
decomposed into linear inequalities over new variables representing the max
expression. Our implementation uses bounds(R)-consistency for all linear
arithmetic, and decomposes (19) as explained. An important part of a CP
solution is the strategy used to search for a solution, which we choose as follows:

minimise K by branch-and-bound search
for b := 1 to b̄

instantiate Nb by lower half first bisection
S := [1..n]
while S �= ∅

choose the row i ∈ S with greatest row hardness
S := S − {i}
for j := 1 to m

for b := 1 to b̄
instantiate Qb,i,j by lower half first bisection

on failure break (return to the last choice on Nb)

After the Nb variables are fixed, rows are investigated in order of hardness.
The hardness of row i is defined as the value of the expression (�) with Gi,j = Ii,j .
It captures the minimal sum of weights required to build a solution to that row.

The search strategy uses a simple form of intelligent backtracking based on
the constraint graph. Qb,i,j and Qb′,i′,j′ where i �= i′ do not appear directly in
any constraint together, and once the Nb are fixed the remaining constraints
are effectively partitioned into independent problems on i. Hence failure for any
row i indicates we must try a different solution to Nb.

While the ordering of the rows can make an order of magnitude improvement
in performance, the independent solving of the subproblems is vital for tackling
the larger problems.

5 Benchmarks

We tested several model/solver combinations on random intensity matrices. The
parameters were their dimension, ranging from 3× 3 to 10× 10, and their maxi-

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 13

Table 1. Benchmark results

Unit Radiation Leaf-Implicit Counter/IP Counter/CP
CPU time (s) CPU time (s) CPU time (s) CPU time (s)

Max. val. avg. max. avg. max. avg. max. avg. max.

5 × 5
3 33.02 844.05 2.17 55.23 0.01 0.01 0.00 0.02
4 64.98 1479.85 2.32 47.45 0.01 0.05 0.01 0.02
5 120.41 (1) 1800 2.48 7.52 0.01 0.03 0.01 0.06
6 509.14 (7) 1800 78.76 180.01 0.02 0.05 0.04 0.07
7 609.33 (9) 1800 84.89 610.70 0.02 0.07 0.05 0.07
8 845.41 (11) 1800 639.67 (8) 1800 0.05 0.26 0.06 0.08
9 728.39 (9) 1800 614.61 (10) 1800 0.06 0.28 0.07 0.09

10 1183.06 (15) 1800 797.61 (13) 1800 0.08 0.39 0.07 0.09
11 1416.51 (21) 1800 712.34 (10) 1800 0.10 0.21 0.08 0.11
12 1369.00 (19) 1800 989.09 (16) 1800 0.22 1.84 0.08 0.11
13 1596.02 (21) 1800 1341.48 (22) 1800 0.28 1.73 0.09 0.16
14 — — — — 0.41 2.75 0.11 0.20
15 — — — — 0.54 1.52 0.12 0.25

8 × 8
3 1085.75 (17) 1800 731.85 (10) 1800 0.01 0.02 0.05 0.12
4 1484.24 (23) 1800 950.58 (11) 1800 0.03 0.05 0.06 0.06
5 1553.29 (23) 1800 1586.38 (22) 1800 0.06 0.09 0.06 0.08
6 — — 3.87 45.19 0.08 0.09
7 — — 0.51 3.96 0.09 0.11
8 — — 133.74 (1) 1800 0.12 0.19
9 — — 74.56 (1) 1800 0.15 0.24

10 — — 372.53 (5) 1800 0.26 0.55
11 — — 232.80 (2) 1800 0.39 2.07
12 — — 507.40 (8) 1800 0.73 5.28
13 — — 743.32 (11) 1800 0.87 2.14
14 — — — — 1.36 4.19
15 — — — — 2.45 6.37

10 × 10
3 0.02 0.04 0.07 0.12
4 0.05 0.25 0.06 0.08
5 0.17 1.64 0.07 0.09
6 1.69 15.16 0.09 0.14
7 108.95 (1) 1800 0.12 0.21
8 215.97 (3) 1800 0.20 0.39
9 807.67 (12) 1800 0.46 4.51

10 1120.93 (18) 1800 0.87 4.75
11 1068.42 (14) 1800 0.97 2.82
12 1447.72 (23) 1800 1.79 7.86
13 — — 6.84 46.89
14 — — 15.41 133.22
15 — — 21.17 118.51

14 D. Baatar et al.

mum value, ranging from 3 to 15. For each parameter combination we considered
30 instances. We set a time limit of 30 minutes per instance. All benchmarks
were run on the same hardware, a PC with a 2.0 GHz Intel Pentium M Processor
and 2.0 GB RAM. The IP solver was CPlex version 9.13. As the CP platform we
used the prototype currently being developed on top of the Mercury system [5].

We compare the Unit Radiation model, the Leaf-Implicit model, the Counter
model, all with IP, and the Counter model with CP. A subset of the results are
shown in Table 1. We show the average CPU times (of all times including time
outs) and maximum CPU time in seconds, and in parentheses the number of
instances that timed out for a parameter combination. A ‘—’ represents that all
instances timed out, and a blank entry indicates we did not run any instances
since the approach was unable to effectively solve smaller instances.

Clearly the Unit Radiation model is bettered by the Leaf-Implicit model which
is again substantially bettered by the Counter model. The CP solution is sub-
stantially better than the IP solution to the Counter model because of the ability
to decompose the problem into independent sub-problems after the Nb are fixed.

We also experimented with some other models. The Unit Radiation and Leaf-
Implicit models without symmetry breaking performed significantly worse than
the models with symmetry breaking, as expected. The direct CP model described
in Section 4.1 worked for very small dimensions (4,5) but did not scale; therefore,
no benchmark results are reported. Finally, we experimented with a CP/IP hy-
brid of the Counter model, where the linear relaxation of the IP model is used as
a propagator on the objective function and to check relaxed global satisfiability
inside the CP search (see e.g. [14]). While the hybrid decreased the search space,
and sometimes substantially so, the overhead of running the LP solver meant
the resulting times were many times the pure CP solving time.

6 Concluding Remarks

We have defined the Counter model for minimal cardinality decomposition of
integer matrices with the consecutive-ones property. The model significantly im-
proves upon earlier models for the same problem, in both an integer programming
and constraint programming formulation. Its critical feature is an indexing that
avoids introducing symmetries.

A drawback of the Counter model is that, as in the Unit Radiation model,
the number of variables depends on the maximum intensity. For the practically
interesting cases in cancer radiation therapy, this may not be an issue: in in-
stances available to us, the maximum intensity does not exceed 20. It would be
interesting to see if there are other problems where the approach of indexing on
number of patterns can lead to good models.

Finally, practical problem instances may have larger dimensions: current mul-
tileaf collimators allow up to 40 rows (although the outer ones may largely be
empty), making further efficiency improvements useful. For example, the Counter
model in a CP solver might benefit from a special constraint for (19) to avoid
decomposing it into parts, where propagation strength is lost.

Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices 15

References

1. R.K. Ahuja and H.W. Hamacher. Linear time network flow algorithm to minimize
beam-on-time for unconstrained multileaf collimator problems in cancer radiation
therapy. Networks, 45(1):36–41, 2004.

2. D. Baatar. Matrix decomposition with time and cardinality objectives: Theory, Al-
gorithms and Application to Multileaf collimator sequencing. PhD thesis, University
of Kaiserslautern, Germany, 2005.

3. D. Baatar, H. W. Hamacher, M. Ehrgott, and G. J. Woeginger. Decomposition of
integer matrices and multileaf collimator sequencing. Discrete Applied Mathemat-
ics, 152(1-3):6–34, 2005.

4. N. Bansal, D. Coppersmith, and B. Schieber. Minimizing setup and beam-on times
in radiation therapy. In J. Dı́az, K. Jansen, J. D. P. Rolim, and U. Zwick, editors,
Proc. 9th Int. WS on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX’06), volume 4110 of LNCS, pages 27–38. Springer, 2006.

5. R. Becket, M. J. Garcia de la Banda, K. Marriott, Z. Somogyi, P. J. Stuckey,
and M. Wallace. Adding constraint solving to Mercury. In P. Van Hentenryck,
editor, Proc. 8th Int. Symposium of Practical Aspects of Declarative Languages
(PADL’06), volume 3819 of LNCS, pages 118–133. Springer, 2006.

6. D. Z. Chen, X.S. Hu, C. Wang, and X.R. Wu. Mountain reduction, block matching,
and applications in intensity-modulated radiation therapy. In Proc. 21st Annual
Symposium on Computational Geometry, pages 35–44, 2005.

7. M. Dirkx. Static and dynamic intensity modulation in radiotherapy using a mul-
tileaf collimator. PhD thesis, Daniel de Hoed Cancer Centre, University Hospital
Rotterdam, The Netherlands, 2000.

8. K. Engel. A new algorithm for optimal multileaf collimator leaf segmentation.
Discrete Applied Mathematics, 152(1-3):35–51, 2005.

9. H. W. Hamacher and K.-H. Kuefer. Inverse radiation therapy planning: A multiple
objective optimisation approach. Berichte des ITWM, 12, 1999.

10. T. Kalinowski. Optimal multileaf collimator field segmentation. PhD thesis, Uni-
versity of Rostock, Germany, 2005.

11. M. Langer, V. Thai, and L. Papiez. Improved leaf sequencing reduces segments of
monitor units needed to deliver IMRT using MLC. Medical Physics, 28:2450–58,
2001.

12. M. J. Maher. Analysis of a global contiguity constraint. In Proc. 4th Workshop on
Rule-based Constraint Reasoning and Programming (RCoRP’02), 2002.

13. H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, A. Kumar, and J. G. Li. A novel
linear programming approach to fluence map optimization for intensity modulated
radiation therapy planning. Phys. Med. Biol., 48:3521–3542, 2003.

14. K. Shen and J. Schimpf. Eplex: Harnessing mathematical programming solvers for
constraint logic programming. In P. van Beek, editor, Proc. 11th Int. Conference
on Principles and Practice of Constraint Programming, pages 622–636, 2005.

15. J. E. Tepper and T. R. Mackie. Radiation therapy treatment optimization. In
Seminars in Radiation Oncology, volume 9 of 1, pages 1–117, 1999.

16. M. G. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint
logic programming. ICL Systems Journal, 12(1):159–200, 1997.

17. S. Webb. Intensity modulated radiation therapy. In Institute of Physics Publishing
Bristol and Philadelphia, 2001.

Connections in Networks:

Hardness of Feasibility Versus Optimality�

Jon Conrad, Carla P. Gomes,
Willem-Jan van Hoeve, Ashish Sabharwal, and Jordan Suter

Cornell University, Ithaca, NY 14853, USA
{jmc16,jfs24}@cornell.edu, {gomes,vanhoeve,sabhar}@cs.cornell.edu

Abstract. We study the complexity of combinatorial problems that
consist of competing infeasibility and optimization components. In par-
ticular, we investigate the complexity of the connection subgraph prob-
lem, which occurs, e.g., in resource environment economics and social
networks. We present results on its worst-case hardness and approxima-
bility. We then provide a typical-case analysis by means of a detailed
computational study. First, we identify an easy-hard-easy pattern, coin-
ciding with the feasibility phase transition of the problem. Second, our
experimental results reveal an interesting interplay between feasibility
and optimization. They surprisingly show that proving optimality of the
solution of the feasible instances can be substantially easier than proving
infeasibility of the infeasible instances in a computationally hard region
of the problem space. We also observe an intriguing easy-hard-easy pro-
file for the optimization component itself.

1 Introduction

There is a large body of research studying typical-case complexity of decision
problems. This work has provided us with a deeper understanding of such prob-
lems: we now have a finer characterization of their hardness beyond the standard
worst-case notion underlying NP-completeness results, which in turn has led to
the design of new algorithmic strategies for combinatorial problems. Neverthe-
less, while pure decision problems play a prominent role in computer science,
most practical combinatorial problems, as they arise in fields like economics,
operations research, and engineering, contain a clear optimization objective in
addition to a set of feasibility constraints. In our research agenda we are inter-
ested in understanding the interplay between feasibility and optimality. We note
that there has been some work on the study of the typical-case complexity of
pure optimization problems [6, 10], but not concerning problems that naturally
combine a feasibility and an optimization component.

As a study case we consider the typical-case complexity of a problem mo-
tivated from resource environment economics and social networks, containing

� Research supported by the Intelligent Information Systems Institute (IISI), Cornell
University (AFOSR grant F49620-01-1-0076).

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 16–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Connections in Networks: Hardness of Feasibility Versus Optimality 17

P1

P5

P3

P6P4

P8

P9

P7

P11

P10

P2 water
2 3

5

8

4

10

911

1

7

6

Fig. 1. The “corridor” problem and the corresponding graph representation. The re-
serves (P1, P6, and P7) and their corresponding vertices are shaded.

competing feasibility and optimization components. Our experimental results
show that the complexity profile of this problem introduces several intriguing
aspects that do not occur in pure decision problems. A good understanding of
these issues will allow researchers to design better algorithms for a range of
applications in a variety of domains.

In the context of resource environment economics, our problem is an abstrac-
tion of an application that arises in the design of wildlife preserves (see e.g. [1],
[3]). In many parts of the world, land development has resulted in a reduction
and fragmentation of natural habitat. Wildlife populations living in a fragmented
landscape are more vulnerable to local extinction due to stochastic events and
are also prone to inbreeding depression. One method for alleviating the negative
impact of land fragmentation is the creation of conservation corridors (alterna-
tively referred to as wildlife-, habitat-, environmental-, or movement-corridors).
Conservation corridors are continuous areas of protected land that link zones
of biological significance [9] (see Figure 1). In designing conservation corridors,
land use planners generally operate with a limited budget with which to secure
the land to make up the corridor. The most environmentally beneficial conserva-
tion corridor would entail protecting every piece of land that exists between the
areas of biological significance, hereafter referred to as natural areas or reserves.
In most cases, however, purchasing (the development rights to) every piece of
available land would be exceedingly expensive for a land trust or government
that is operating with a limited budget. The objective is therefore to design cor-
ridors that are made up of the land parcels that yield the highest possible level
of environmental benefits (the “utility”) within the limited budget available.

In the context of social networks, a similar problem has been investigated by
Faloutsos, McCurley, and Tomkins [5]. Here, one is interested, for example, in
identifying the few people most likely to have been infected with a disease, or
individuals with unexpected ties to any members of a list of other individuals.
This relationship is captured through links in an associated social network graph
with people forming the nodes. Faloutsos et al. consider networks containing two
special nodes (the “terminals”) and explore practically useful utility functions

18 J. Conrad et al.

that capture the connection between these two terminal nodes. Our interest,
on the other hand, is in studying this problem with the sum-of-weights utility
function but with several terminals. In either case, the problem has a bounded-
cost aspect that competes with a utility one is trying to maximize.

We formalize the above problems as the connection subgraph problem. Some-
what informally, given a graph G on a set of vertices with corresponding utilities,
costs, and reserve labels (i.e., whether or not a vertex is a reserve), a set of edges
connecting the vertices, and a cost bound (the “budget”), our problem consists
of finding a connected subgraph of G that includes all the vertices labeled as
reserves and maximizes the total utility, while not exceeding the cost bound.
In terms of worst-case complexity, we show that the optimization task associ-
ated with the connection subgraph problem is NP-hard, by relating it to the
Steiner tree problem. Unlike the original Steiner tree problem, the NP-hardness
result here holds even when the problem contains no reserves. We also show that
the dual cost minimization problem is NP-hard to approximate within a certain
constant factor.

In order to investigate the typical-case complexity of the connection subgraph
problem, we perform a series of experiments on semi-structured graphs with
randomly placed terminals and randomly generated cost and utility functions.
To this end, we introduce a mixed integer linear programming formulation of the
problem, which is applied to solve the instances to optimality using Cplex [7].
Figure 2 shows a preview of our results; we defer the details of the experimental
setup to Section 5.

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
un

tim
e

(s
)

%
 u

ns
at

is
af

ia
bl

e

Budget (fraction)

median time
% unsatisfiable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
un

tim
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 2. Aggregated and separated hardness profiles for connection subgraph

The empirical complexity profile of this problem reveals an interesting
interplay between the computational hardness of feasibility testing and opti-
mization. In particular, for very low cost bounds (budgets below fraction 0.05
in Figure 2.a), almost all instances are infeasible, which is relatively easy to
determine. With increasing cost bounds, one reaches the now standard phase
transition point in the feasibility profile, where instances switch from being

Connections in Networks: Hardness of Feasibility Versus Optimality 19

mostly infeasible to mostly feasible (at roughly budget fraction 0.13 in the plot).
At this transition, we see a sharp increase in the complexity of determining fea-
sibility. More interestingly, however, at this phase transition boundary, we have
a mixture of feasible and infeasible instances. For the feasible instances, we still
need to solve the optimization problem to find (and prove) the maximum util-
ity given the budget constraints. Quite surprisingly, proving such optimality of
the solution of these feasible instances can be substantially easier than showing
the infeasibility of the other instances in this region (see Figure 2.b). In other
words, we have a region in our problem space where the feasible vs. infeasible
decision is computationally much harder than proving optimality of the feasible
instances. This is surprising because showing optimality also involves a notion
of infeasibility: one has to show that there is no solution with a higher utility
for the given budget. Intuitively, it appears that the purely combinatorial task
of not being able to satisfy the hard constraints of the problem is harder than
optimizing solutions in the feasible region.

The second part of the complexity profile of the connection subgraph prob-
lem, shown as the lower curve in Figure 2.b, concerns what happens in the
feasible region when we further increase the budget beyond the satisfiability
phase transition. Almost all instances are now easily shown to be feasible. How-
ever, the complexity of finding a solution with the maximum utility and proving
its optimality first increases (till budget fraction roughly 0.2 in the plot) and,
subsequently, for larger and larger budgets, decreases. Therefore, we have an
easy-hard-easy profile in the computational cost of showing optimality, whose
peak lies to the right of the feasible to infeasible transition (which, as we saw
earlier, is at budget fraction roughly 0.13). In the combined plot of the me-
dian runtime of all instances (Figure 2.a), we obtain a curve that peaks around
the feasible to infeasible transition because the high cost of proving infeasibility
dominates the median cost in the phase transition area.

We note that such easy-hard-easy patterns have been observed in some pure
optimization problems before, albeit under a-typical circumstances. For instance,
Zhang and Korf [10] identify a similar pattern for the Traveling Salesperson
Problem, using a log-normal distribution of the distance function. In our case,
the pattern appears to emerge naturally from the model.

These aspects are quite intriguing and require further study. Of course, we do
not claim that these observations will hold for all optimization problems that
involve a feasibility component. In fact, quite often the feasibility part of opti-
mization tasks is relatively easy provided one has sufficient resources (including
budget). However, our study suggests that there may be classes of models or even
problems where the feasibility component in and of itself is surprisingly hard,
even compared to the optimization aspect. One issue that requires further re-
search is the extent to which the mixed integer programming (MIP) formulation
and the Cplex algorithm are well suited to capture the combinatorial nature of
the feasibility problem. In Section 6, we mention two alternative problem formu-
lation/solution methods that might initially appear to be more promising than
using Cplex on a pure MIP formulation, but are unlikely to change the overall

20 J. Conrad et al.

picture. Lastly, we note that from a practical point of view, this interplay be-
tween feasibility and optimization can be quite important. For example, under
tight budget constraints, one may want to spend significant computational re-
sources to ensure that no feasible solution exists, before deciding on an increased
budget or another relaxation of the problem constraints.

The rest of the paper is organized as follows. In Section 2 we present the con-
nection subgraph problem. We discuss the theoretical complexity of this problem
in Section 3. Section 4 describes our Mixed Integer Linear Programming model
of the connection subgraph problem. The empirical results are presented in Sec-
tion 5. Finally, we conclude with a discussion in Section 6.

2 Connection Subgraph Problem

Let Z
+ denote the set {0, 1, 2, . . .} of non-negative integers. The decision version

of the connection subgraph problem is defined on an undirected graph as follows:

Definition 1 (Connection Subgraph Problem). Given an undirected graph
G = (V, E) with terminal vertices T ⊆ V , vertex costs c : V → Z

+, vertex
utilities u : V → Z

+, a cost bound C ∈ Z
+, and a desired utility U ∈ Z

+, does
there exist a vertex-induced subgraph H of G such that

1. H is connected,

2. T ⊆ V (H), i.e., H contains all terminal vertices,

3.
∑

v∈V (H) c(v) ≤ C, i.e., H has cost at most C, and

4.
∑

v∈V (H) u(v) ≥ U , i.e., H has utility at least U?

In this decision problem, we can relax one of the last two conditions to obtain
two natural optimization problems:

– Utility Optimization: given a cost bound C, maximize the utility of H ,

– Cost Optimization: given a desired utility U , minimize the cost of H .

3 NP-Completeness and Hardness of Approximation

The connection subgraph problem is a generalized variant of the Steiner tree
problem on graphs, with costs on vertices rather than on edges and with utilities
in addition to costs. The utilities add a new dimension of hardness to the prob-
lem. In fact, while the Steiner tree problem is polynomial time solvable when |T |
is any fixed constant [cf. 8], we will show that the connection subgraph problems
remains NP-complete even when |T | = 0. We prove this by a reduction from the
Steiner tree problem. This reduction also applies to planar graphs, for which the
Steiner tree problem is still NP-complete [cf. 8].

Theorem 1 (NP-Completeness). The decision version of the connection
subgraph problem, even on planar graphs and without any terminals, is NP-
complete.

Connections in Networks: Hardness of Feasibility Versus Optimality 21

Proof. The problem is clearly in NP, because a certificate subgraph H can be
easily verified to have the desired properties, namely, connectedness, low enough
cost, and high enough utility. For NP-hardness, consider the Steiner tree problem
on a graph Ĝ = (V̂ , Ê) with terminal set T̂ ⊆ V̂ , edge cost function ĉ : Ê → Z

+,
and cost bound Ĉ.

An instance of the connection subgraph problem can be constructed from this
as follows. Construct a graph G = (V, E) with V = V̂ ∪ Ê and edges defined
as follows. For every edge e = {v, w} ∈ Ê, create edges {v, e} , {w, e} ∈ E. The
terminal set remains the same: T = T̂ . Overall, |V | = |V̂ | + |Ê|, |E| = 2|Ê|,
and |T | = |T̂ |. For costs, set c(v) = 0 for v ∈ V̂ and c(e) = ĉ(e). For utilities,
set u(v) = 1 for v ∈ T and u(v) = 0 for v �∈ T . Finally, the cost bound for the
connection subgraph is C = Ĉ and the utility bound is U = |E|.

It is easy to verify that the Steiner tree problem on Ĝ and T̂ has a solution with
cost at most C iff the connection subgraph problem on G and T has a solution
with cost at most C and utility at least U . This completes the reduction.

Note that if Ĝ is planar, then so is G. Further, the reduction is oblivious to
the number of terminals in G. Hence, NP-completeness holds even on planar
graphs and without any terminals. 	

This immediately implies the following:

Corollary 1 (NP-Hardness of Optimization). The cost and utility opti-
mization versions of the connection subgraph problem, even on planar graphs
and without any terminals, are both NP-hard.

Observe that in the reduction used in the proof of Theorem 1, Ĝ has a Steiner
tree with cost C′ iff G has a connection subgraph with cost C′. Consequently,
if the cost optimization version of the connection subgraph instance (i.e., cost
minimization) can be approximated within some factor α ≥ 1 (i.e., if one can
find a solution of cost at most α times the optimal), then the original Steiner tree
problem can also be approximated within factor α. It is, however, known that
there exists a factor α0 such that the Steiner tree problem cannot be approx-
imated within factor α0, unless P=NP. This immediately gives us a hardness
of approximation result for the utility optimization version of the connection
subgraph problem. Unfortunately, the best known value of α0 is roughly 1 +
10−7 [cf. 8].

We now describe a different reduction — from the NP-complete Vertex Cover
problem — which will enable us to derive as a corollary a much stronger approx-
imation hardness result.

Lemma 1. There is a polynomial time reduction from Vertex Cover to the con-
nection subgraph problem, even without any terminals, such that the size of the
vertex cover in a solution to the former equals the cost of the subgraph in a
solution to the latter.

Proof. We give a reduction along the lines of the one given by Bern and Plass-
mann [2] for the Steiner tree problem. The reduction is oblivious to the number
of terminals, and holds in particular even when there are no terminals.

22 J. Conrad et al.

v1 v2 v3 . . . vn

e2 e3 eme1

e1 = (v1, v3), e2 = (v1, vn), e3 = (v2, v3), . . . , em = (vn−2, vn)
Edges in the original graph Ĝ :

cost = 1, utility = 0

cost = 0, utility = 1

. . .

Full clique

Fig. 3. Reduction from Vertex Cover

Recall that a vertex cover of a graph Ĝ = (V̂ , Ê) is a set of vertices V ′ ⊆ V̂

such that for every edge {v, w} ∈ Ê, at least one of v and w is in V ′. The vertex
cover problem is to determine whether, given Ĝ and C ≥ 0, there exists a vertex
cover V ′ of Ĝ with |V ′| ≤ C. We convert this into an instance of the connection
subgraph problem. An example of such a graph is depicted in Fig. 3.

Create a graph G = (V, E) with V = V̂ ∪ Ê and edges defined as follows. For
every v, w ∈ V̂ , v �= w, create edge {v, w} ∈ E; for every e = {v, w} ∈ Ê, create
edges {v, e} , {w, e} ∈ E. Overall, G has |V̂ | + |Ê| vertices and

(
�V
2

)
+ 2Ê edges.

For costs, set c(v) to be 1 if v ∈ V̂ , and 0 otherwise. For utilities, set u(e) to be
1 if e ∈ Ê, and 0 otherwise. Finally, fix the set of terminals to be an arbitrary
subset of Ê.

We prove that solutions to the connection subgraph problem on G with costs
and utilities as above, cost bound C, and desired utility U = |Ê| are in one-to-one
correspondence with vertex covers of Ĝ of size at most C.

First, let vertex-induced subgraph H of G be a solution to the connection
subgraph instance. Let V ′ = V (H) ∩ V̂ . We claim that V ′ is a vertex cover of
Ĝ of size at most C. Clearly, |V ′| ≤ C because of the cost constraint on H . To
see that V ′ is indeed a vertex cover of Ĝ, note that (A) because of the utility
constraint, V ′ must contain all of the vertices from Ê, and (B) because of the
connectedness constraint, every such vertex must have at least one edge in E(H),
i.e., for each e = {v, w} ∈ Ê, V ′ must include at least one of v and w.

Conversely, let V ′ be a vertex cover of Ĝ with at most C vertices. This directly
yields a solution H of the connection subgraph problem: let H be the subgraph
of G induced by vertices V ′ ∪ Ê. By construction, H has the same cost as V ′

(in particular, at most C) and has utility exactly U . Since V ′ is a vertex cover,
for every edge e = {v, w} ∈ Ê, at least one of v and w must be in V ′, which im-
plies that H must have at least one edge involving e and a vertex in V ′. From this,

Connections in Networks: Hardness of Feasibility Versus Optimality 23

and the fact that all vertices of V ′ already form a clique in H , it follows that H
itself is connected.

This settles our claim that solutions to the two problem instances are in one-
to-one correspondence, and finishes the proof. 	

Combining Lemma 1 with the fact that the vertex cover problem is NP-hard to
approximate within a factor of 1.36 [4] immediately gives us the following:

Theorem 2 (APX-Hardness of Cost Optimization). The cost optimiza-
tion version of the connection subgraph problem, even without any terminals, is
NP-hard to approximate within a factor of 1.36.

4 Mixed Integer Linear Programming Model

Next we present the Mixed Integer Linear Programming Model (MIP model)
for the connection subgraph problem, that we used in our experiments. Let
G = (V, E) be the graph under consideration, with V = {1, . . . , n}.

For each vertex i ∈ V , we introduce a binary variable xi, representing whether
or not i is in the connected subgraph. Then, the objective function and budget
constraint are stated as:

maximize
∑

i∈V uixi, (1)
s.t.

∑
i∈V cixi ≤ C, (2)
xi ∈ {0, 1}, ∀i ∈ V. (3)

To ensure the connectivity of the subgraph, we apply a particular network flow
model, where the network is obtained by replacing all undirected edges {i, j} ∈ E
by two directed edge {i, j} and {j, i}. First, we introduce a source vertex 0, with
maximum total outgoing flow n. We arbitrarily choose one terminal vertex t ∈ T ,
and define a directed edge {0, t} to insert the flow into the network, assuming that
there exists at least one such vertex.1 Then, by demanding that the flow reaches
all terminal vertices, the edges carrying flow (together with the corresponding
vertices) represent a connected subgraph. To this end, each of the vertices with
a positive incoming flow will act as a ‘sink’, by ‘consuming’ one unit of flow. In
addition, flow conservation holds: for every vertex the amount of incoming flow
equals the amount of outgoing flow.

More formally, for each edge {i, j} ∈ E, we introduce a nonnegative variable
yij to indicate the amount of flow from i to j. For the source, we introduce a
variable x0 ∈ [0, n], representing the eventual residual flow. The insertion of the
flow into the network is then stated as:

x0 + y0t = n, (4)

1 If there are no terminal vertices specified, we add edges from the source to all vertices
in the graph, and demand that at most one of these edges is used to carry flow.

24 J. Conrad et al.

2 3

65

7 8

4

2 3

65

7 8

4

1

9

01

9

9 8 7

6

54

3
2 1

a. Original graph b. Feasible flow

Fig. 4. Flow representation of the connection subgraph problem on a graph with 9
vertices. The terminal vertices 1 and 9 are shaded.

where t ∈ T is arbitrarily chosen. Each of the vertices with positive incoming
flow retains one unit of flow, i.e., (yij > 0) ⇒ (xj = 1), ∀ {i, j} ∈ E. We convert
this relation into a linear constraint:

yij < nxj , ∀ {i, j} ∈ E. (5)

The flow conservation is modeled as:
∑

i:{i,j}∈E

yij = xj +
∑

i:{j,i}∈E

yij , ∀j ∈ V. (6)

Finally, terminal vertices retain one unit of flow:

xt = 1, ∀t ∈ T. (7)

In Figure 4 we give an example of our flow representation, where we omit the
costs for clarity. Figure 4.a presents a graph on 9 vertices with terminal vertices
1 and 9. In Figure 4.b, a feasible flow for this graph is depicted, originating
from the source 0, with value 9. It visits all vertices, while each visited vertex
consumes one unit of flow. The thus connected subgraph contains all vertices in
this case, including all terminal vertices.

5 Computational Hardness Profiles

We next perform a detailed empirical study of the connection subgraph problem.
In this study, our parameter is the feasibility component of the problem, i.e., the
cost bound (or budget). For a varying budget, we investigate the satisfiability
of the problem, as well as its computational hardness with respect to proving
infeasibility or optimality.

In our experiments, we make use of semi-structured graphs, with uniform
random utility and cost functions. The graphs are composed of an m × m rec-
tangular lattice or grid, where the order m is either 6, 8, or 10. This lattice graph
is motivated by the structure of the original conservation corridors problem. In

Connections in Networks: Hardness of Feasibility Versus Optimality 25

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
un

tim
e

(s
)

in
 lo

g-
sc

al
e

Budget (fraction)

median time, order 6
median time, order 8

median time, order 10

Fig. 5. Hardness profile for lattices of order 6, 8, and 10, without terminal vertices

this lattice, we place k terminal vertices, where k is 0, 3, 10, or 20. When k ≥ 2,
we place two terminal vertices in the ‘upper left’ and ‘lower right’ corners of
the lattice, so as to maximize the distance between them and “cover” most of
the graph. This is done to avoid the occurrence of too many pathological cases,
where most of the graph does not play any role in constructing an optimal con-
nection subgraph. The remaining k − 2 terminal vertices are placed uniformly
at random in the graph. To define the utility and cost functions, we assign uni-
formly at random a utility and a cost from the set {1, 2, . . . , 10} to each vertex
in the graph. The cost and utility functions are uncorrelated.

In the figures below, each data point is based on 100 random instances or more,
at a given budget. For the figures comparing infeasible and feasible instances,
this means that the sum of the feasible and infeasible instances at each budget is
at least 100. The hardness curves are represented by median running times over
all instances per data point, while for the feasibility curves we take the average.
As the scale for the budget (on the x-axis), we use the following procedure.
For every instance, we compute the total cost of all vertices. The budget is
calculated as a fraction of this total cost. We plot this fraction on the x-axis.
All our experiments were conducted on a 3.8 GHz Intel Xeon machine with 2
GB memory running Linux 2.6.9-22.ELsmp. We used Cplex 10.1 [7] to solve the
MIP problems.

First, we present computational results on graphs without terminal vertices.
These problems are always satisfiable, and can thus be seen as pure optimization
problems. Figure 5 shows the hardness profile (i.e., the running time) on lattices
of order 6, 8, and 10. Notice that the median time is plotted in log-scale in this
figure. The plots clearly indicate an easy-hard-easy pattern for these instances,
even though they are all feasible with respect to the budget. As remarked earlier,
such patterns have been observed earlier in some pure optimization problems,
but only under specific random distributions.

Second, we turn our attention to graphs with terminal vertices. In Figure 5.a,
we show the hardness profile of lattices of order 10, with 3 terminals. In addition,

26 J. Conrad et al.

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
un

tim
e

(s
)

%
 u

ns
at

is
af

ia
bl

e

Budget (fraction)

median time
% unsatisfiable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
un

tim
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 6. Hardness and satisfiability profiles for lattices of order 10 with 3 terminals

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
un

tim
e

(s
)

%
 u

ns
at

is
af

ia
bl

e

Budget (fraction)

median time
% unsatisfiable

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.1 0.2 0.3 0.4 0.5

R
un

tim
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 7. Hardness and satisfiability profiles for lattices of order 10 with 10 terminals

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
un

tim
e

(s
)

%
 u

ns
at

is
af

ia
bl

e

Budget (fraction)

median time
% unsatisfiable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
un

tim
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 8. Hardness and satisfiability profiles for lattices of order 10 with 20 terminals

Connections in Networks: Hardness of Feasibility Versus Optimality 27

the satisfiability profile is shown in this figure: we plot the percentage of unsat-
isfiable instances with respect to a varying budget. Figures 7.a and 8.a present
similar graphs for lattices of order 10, with 10 and 20 terminals, respectively. In
all figures, we see a sharp phase transition from a region in which almost all in-
stances are unsatisfiable, to a region in which almost all instances are satisfiable
(when the budget fraction is around 0.15). Furthermore, again these problems ex-
hibit an easy-hard-easy pattern, the peak of which coincides with the satisfiability
phase transition with respect to the budget. Similar relations between the peak of
computational hardness and feasibility phase transitions have been demonstrated
often before for pure satisfiability problems. However, we are unaware of such re-
sults for problems combining both a feasibility and an optimality aspect.

Our experiments also indicate an easy-hard-easy pattern for the hardness of
the problem, depending number of terminals in the graph. For 10 terminals, the
problems are considerably more difficult than for 3 or 20 terminals. Intuitively,
this can be explained by two rivaling aspects: the difficulty of connecting k
terminals, and the complexity on n − k free variables. As k increases, it is more
difficult to connect the terminals. However, when k is large, the resulting problem
on n − k variables becomes easy.

Finally, we compare the hardness of optimization to the hardness of proving
infeasibility. To this end, we separate the hardness profiles for satisfiable and
unsatisfiable problem instances. The resulting plots for lattices of order 10 with
3, 10, and 20 terminals are depicted in Figure 5.b, Figure 7.b, and Figure 8.b,
respectively. In these figures, the curve for unsatisfiable instances represents the
hardness of proving infeasibility, while the curve for satisfiable instances repre-
sents the hardness of proving optimality. Clearly, proving infeasibility becomes
increasingly more difficult when the budget increases, especially inside the phase
transition region. At the same time, the difficulty of proving optimality does not
exhibit this extreme behavior. In fact, when the budget fraction is around 0.15,
we observe that proving infeasibility takes up to 150 times longer than proving
optimality.

6 Summary and Discussion

In this work, we investigated the interplay between the computational tasks of
feasibility testing and optimization. We studied in detail the connection subgraph
problem, for which we presented theoretical worst-case complexity results, as well
as empirical typical-case results. Our experiments reveal interesting trade-offs
between feasibility testing and optimization. One of our main observations is that
proving infeasibility can be considerably more difficult than proving optimality
in a computationally hard region of the problem space. In addition to this, we
identified a satisfiability phase transition coinciding with the complexity peak of
the problem. Somewhat more surprisingly, for the optimization component itself,
we discovered an easy-hard-easy pattern based on the feasibility parameter, even
when the underlying problems are always satisfiable.

In our experimental results, we have applied a mixed integer linear program-
ming model in conjunction with the solver Cplex. Naturally, one could argue

28 J. Conrad et al.

that a different solver or even a different model could have produced different
results. For example, one might propose to check separately the feasibility of the
cost constraint before applying a complete solver. Indeed, checking feasibility of
the cost constraint is equivalent to the metric Steiner tree problem. Although
this latter problem is solvable in polynomial time for a constant number of ter-
minals, it is likely not to be fixed parameter tractable [8]. Hence, it appears
unrealistic to apply such a separate feasibility check as a pre-processor before
using a complete solution technique.

Another direction is to apply a constraint programming (CP) model, which
could perhaps better tackle the feasibility aspect of the problem. However, a good
CP model should ideally capture the cost constraint as a whole, for example as
a global constraint. For the same reason as above, it is unlikely that an efficient
and effective filtering algorithm exists for such a constraint. Moreover, a CP
model by itself is not particularly suitable for the optimization component. More
specifically, for the connection subgraph problem the objective is a weighted sum,
which is known to be difficult to handle by constraint solvers. Nevertheless, a
hybrid constraint programming and mixed integer programming approach might
be effective for this problem, which we leave open as future work.

References

[1] A. Ando, J. Camm, S. Polasky, and A. Solow. Special distributions, land values,
and efficient conservation. Science, 279(5359):2126–2128, 1998.

[2] M. W. Bern and P. E. Plassmann. The Steiner tree problem with edge lengths 1
and 2. Information Processing Letters, 32(4):171–176, 1989.

[3] J. D. Camm, S. K. Norman, S. Polasky, and A. R. Solow. Nature reserve site
selection to maximize expected species covered. Operations Research, 50(6):946–
955, 2002.

[4] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–486, 2005.

[5] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery of connection sub-
graphs. In Proceedings of the 2004 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 118–127. ACM Press, 2004.

[6] I. Gent and T. Walsh. The TSP Phase Transition. Artificial Intelligence, 88(1–2):
349–358, 1996.

[7] ILOG, SA. CPLEX 10.1 Reference Manual, 2006.
[8] H. J. Prömel and A. Steger. The Steiner Tree Problem: A Tour Through Graphs,

Algorithms, and Complexity. Vieweg, 2002.
[9] D. Simberloff, J. Farr, J. Cox, and D. Mehlman. Movement corridors: Conservation

bargains or poor invesments? Conservation Biology, 6:493–504, 1997.
[10] W. Zhang and R. Korf. A Study of Complexity Transitions on the Asymmetric

Traveling Salesman Problem. Artificial Intelligence, 81:223–239, 1996.

Modeling the Regular Constraint with Integer

Programming

Marie-Claude Côté1,3, Bernard Gendron2,3, and Louis-Martin Rousseau1,3

1 Département de mathématiques appliquées et génie industriel, École Polytechnique
de Montréal, Montréal, Canada

2 Département d’informatique et de recherche opérationnelle, Université de Montréal,
Montréal, Canada

3 Interuniversity Research Center on Enterprise Networks, Logistics and
Transportation, Montréal, Canada

{macote,bernard,louism}@crt.umontreal.ca

Abstract. Many optimisation problems contain substructures involving
constraints on sequences of decision variables. Such constraints can be
very complex to express with mixed integer programming (MIP), while
in constraint programming (CP), the global constraint regular easily
represents this kind of substructure with deterministic finite automata
(DFA). In this paper, we use DFAs and the associated layered graph
structure built for the regular constraint consistency algorithm to de-
velop a MIP version of the constraint. We present computational results
on an employee timetabling problem, showing that this new modeling
approach can significantly decrease computational times in comparison
with a classical MIP formulation.

1 Introduction

Many optimisation problems contain substructures involving constraints on
sequences of decision variables. Such substructures are often present, for ex-
ample, in rostering and car sequencing problems. This paper uses constraint
programming (CP) global constraint regular [1] and integrates it to mixed inte-
ger programming (MIP) models to express constraints over sequences of decision
variables. Specifically, we use the layered graph built by the regular constraint
consistency algorithm to formulate a network flow problem that represents fea-
sible sequences of values. This modeling approach allows MIP formulations to
use the expressiveness of deterministic finite automata (DFA), in a way similar
to the regular constraint. We present an application of this approach with an
employee timetabling problem.

The paper is organized as follows. Section 2 presents a review of the literature
on modeling constrained sequences of variables with MIP and CP and provides
background material about the CP regular constraint and network flow theory.
Section 3 gives details about the MIP version of the regular constraint. Finally,
Section 4 describes an employee timetabling problem and compares computa-
tional results obtained with a classical MIP model of the problem and with the
alternative formulation using the MIP regular constraint.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 29–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 M.-C. Côté, B. Gendron, and L.-M. Rousseau

2 Literature Review

2.1 MIP Formulations

The literature on staff scheduling and rostering problems offers many different
approaches to model constrained sequences of decision variables (see [2,3] for
recent surveys on staff scheduling and rostering).

Mathematical programming approaches to model sequences of variables can
be divided in three categories: set covering with explicit formulations (Dantzig
[4], Segal [5]), set covering with implicit formulations (Moondra [6], Bechtolds
and Jacobs [7,8], Thompson [9], Aykin [10], Brusco and Jacobs [11]) and compact
formulations (Laporte et al. [12], Balakrishnan and Wong [13], Isken [14]).

Çezik et al. [15] propose a MIP formulation for the Weekly Tour Schedul-
ing Problem. It handles the weekly horizon by combining seven daily shift-
timetabling models in a network flow framework, which handles the weekly
requirements. The network flow framework is similar to the structure we
propose here. Millar et Kiragu [16] and Ernst et al. [17] use a layered network
to represent allowed transitions between shift patterns to develop rosters. The
shift patterns are fixed a priori. Sodhi [18] combines weekly patterns to create an
entire cyclic roster by forming a directed graph with nodes representing allowed
weekly patterns and arcs representing allowed week-to-week transitions between
these patterns. A MIP model is then used to find an optimal cyclic path to cover
all the weeks of the roster. None of these works suggest a way to generate the
shift patterns automatically. We present a way to implicitly express a large set
of rules and represent all possible patterns for a given planning horizon.

2.2 CP Formulations

CP global constraints allow to formulate some rules over sequences of decision
variables in an expressive way. In particular, the pattern constraint and the
stretch constraint are well adapted to these types of problems. The regular
constraint, introduced in [1], can express several existing global constraints. This
constraint enables to formulate constrained sequences of variables effectively with
CP. Before we define the regular constraint, we briefly introduce important
definitions related to automata theory and regular languages (for more details
on the subject, see [19]).

A deterministic finite automaton (DFA) is described by a 5-tuple Π =
(Q, Σ, δ, q0, F) where:

– Q is a finite set of states;
– Σ is an alphabet;
– δ : Q × Σ → Q is a transition function;
– q0 ∈ Q is the initial state;
– F ⊆ Q is a set of final states.

Modeling the Regular Constraint with Integer Programming 31

An alphabet is a finite set of symbols. A language is a set of words, formed
by symbols over a given alphabet. Regular languages are languages recognized
by a DFA.

The regular constraint is defined as follows:

Definition 1. (Regular language membership constraint).
Let Π = (Q, Σ, δ, q0, F) denote a DFA, let L(Π) be the associated regular lan-
guage and let X = x1, x2, . . . , xn be a finite sequence of variables with respective
finite domains D1, D2, . . . , Dn ⊆ Σ. Then

regular(X, Π) = {(d1, . . . , dn)|di ∈ Di, d1d2 . . . dn ∈ L(Π)}

Note, that other variants of the regular constraint have been studied, in par-
ticular, a soft-regular constraint for over constrained problems [20] and a
cost-regular approach [21].

For the rest of this work, we are interested in the layered graph representa-
tion of the regular constraint used for the consistency algorithm. Let X be a
sequence of variables constrained by a regular constraint, n be the sequence
length and k be the number of states in the DFA Π of the constraint. Let G
be the associated layered graph. G has n + 1 layers (N1, N2, . . . , Nn+1). Each
layer counts at most k nodes, associated with the DFA states. We note qi

k the
node representing state k of Π in layer i of G. The initialize() procedure in
[1] builds G. At the end of the procedure, every arc out of a layer i of G repre-
sents a consistent value for domain Di and each path from initial state q0 to a
final state qn+1

f , f ∈ F represents an admissible instantiation for the variables X .

Example 1. Let Σ = {a, b, c} be an alphabet and Π be a DFA, represented
in Figure 1, recognizing a regular language over this alphabet. The constraint
regular(X, Π), where X = x1, x2, . . . , x5 and D1 = D2 = . . . = D5 = {a, b, c},
would give the layered graph in Figure 2 after the initialize() procedure [1].

The layered graph suggested in [1] is not the only encoding available for the
regular constraint. Notably, Quimper and Walsh [22] proposed to encode it
using a simple sequence of ternary constraints. They use the sequence of decision
variables X and introduce the sequence of variables Q0 to Qn to represent the

1 2 3 4

5

a b a

aba

c
c

Fig. 1. DFA Π with each state shown as a circle, each final state as double circle, and
each transition as an arc

32 M.-C. Côté, B. Gendron, and L.-M. Rousseau

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

a

c
a

b b b

a

b b

a a a

a a

c c c c

X1 X2 X3 X4 X5

Fig. 2. Layered graph builded by the initialize() procedure for regular
(x1, x2, . . . , x5, Π)

states of the DFA. Then, transition constraints C(xi+1, Qi, Qi+1) are posted for
0 ≤ i < n, which hold iff Qi+1 = δ(xi+1, Qi), where δ is the transition function.
To complete the encoding, unary constraints Q0 = q0 and Qn ∈ F are also
posted. Basically, after a filtering of the domains on such an encoding, each
consistent triplet (xi+1, Qi, Qi+1) is equivalent to an arc in the layered graph
described above and each triplet are linked together by the the state variables
(Q0 to Qn).

2.3 Network Flow Theory

Let G = (V, A) be a directed graph with V , the vertex set, A, the arc set, and
nonnegative capacities μij associated with each arc (i, j) ∈ A. We distinguish
two special nodes in G: the source node s and the sink node t. A flow from s
to t in G is defined by the flow variables fij on each arc (i, j) that represent
the amount of flow on this arc. The flow is subject to the following constraints,
where w is the value of the flow from s to t:

∑

{j:(i,j)∈A}
fij −

∑

{j:(j,i)∈A}
fji =

⎧
⎨

⎩

w, for i = s,
0, for all i ∈ V − {s, t},
−w, for i = t,

(1)

0 ≤ fij ≤ μij , ∀(i, j) ∈ A. (2)

Equations (1) ensure that for any node q �= s, t, the amount of flow entering q is
equal to the amount of flow leaving q. They are called flow conservation equa-
tions. Constraints (2) ensure that the amount of flow on an arc is nonnegative
and does not exceed its capacity.

For more information on network flow theory, we refer to [23].

Modeling the Regular Constraint with Integer Programming 33

3 MIP Regular Constraint

The use of DFAs to express constraints on values taken by sequences of variables
is very useful in CP. Equivalent constraints can be very complex to formulate in
a MIP 0-1 compact model. The aim of our work is precisely to propose a way to
formulate MIP 0-1 compact models by using DFAs. Our approach is based on
the CP regular constraint. Before presenting the MIP regular constraint, we
recall a well-known correspondence between CP and MIP 0-1 variables.

Let Xi be a CP variable in a sequence of n variables with domain Di, i =
1, 2, . . . , n. We define a corresponding set of MIP 0-1 variables as follows. For
all i, for all j ∈ Di, we associate a 0-1 variable xij . We also need the following
constraints:

∑
j∈Di

xij = 1 for all i. These constraints ensure that only one value
is assigned to a position of the sequence. A solution with xij = 1 means “position
i of the sequence is assigned to value j”.

The idea behind the MIP regular constraint is to use the layered graph built
and filtered by the initialize() procedure for the consistency algorithm of the
CP regular constraint [1]. We create a similar graph, but, instead of having,
between each layer of the graph, arcs related to values of a domain, we have
a MIP 0-1 variable for each arc of the graph. With little adjustment of this
structure, we can approach the problem as a network flow problem. With one
unit of flow entering and leaving the graph and capacities equal to one on each
arc, each “position” is assigned to exactly one value. This property captures the∑

j∈Di
xij = 1, ∀i constraints.

To complete the transformation, we have to define a source node and a sink
node in this graph. The source node is simply the node related to the initial state
of the associated DFA on the first layer. We introduce a sink node t connected
to each node representing a final state of the DFA on the last layer. A feasible
flow in this graph represents an instantiation in the CP version.

To write the flow conservation equations correctly, we must consider that, in
the CP layered graph, multiple arcs representing the same value may be related
to the same variable. For instance, in the graph of Figure 2, x3b would correspond
to the arc from node 2 of layer 3 to node 3 of layer 4, and, to the arc from node
3 of layer 3 to node 3 of layer 4.

To distinguish the arcs we introduce the sijqk
∈ {0, 1} flow variables, where

sijqk
is the amount of flow on the arc leaving node representing state qk of

layer i with value j. These variables are unique due to the determinism of the
automaton. We also introduce the variables sfqk

∈ {0, 1} to represent the arcs
leaving the final states of the last layer. The variable w ∈ {0, 1} is the amount
of flow entering and leaving the graph.

An arc from a to c with label b is defined as a triplet (a, b, c). We note
inArcs[i][k] and outArcs[i][k] the sets of arcs entering and leaving the node
qk of layer i. The MIP formulation of the regular constraint is then written as
follows:

34 M.-C. Côté, B. Gendron, and L.-M. Rousseau

∑

j∈Ω10

s1jq0 = w, (3)

∑

(j,q′
k
)∈Δik

s(i−1)jq′
k

=
∑

j∈Ωik

sijqk
, ∀i ∈ {2, . . . , n} , qk ∈ N i, (4)

∑

(j,q′
k)∈Δ(n+1)k

snjq′
k

= sfqk
, ∀qk ∈ Nn+1, (5)

∑

qk∈Nn+1

sfqk
= w, (6)

xij =
∑

qk∈Σij

sijqk
, ∀i ∈ {1, . . . , n} , j ∈ Di, (7)

sijqk
∈ {0, 1} i ∈ {1, . . . , n} , qk ∈ N i, j ∈ Ωik, (8)

sfqk
∈ {0, 1} qk ∈ Nn+1, (9)

where Δik ={(j, q′k)|(q′k, j, qk) ∈ inArcs[i][k]}, Ωik={j|(qk, j,) ∈ outArcs[i][k]},
Σij = {qk|(qk, j,) ∈ outArcs[i][k]}.

Constraints (7) link the decision variables x with the flow variables. Note that
in a case where the MIP regular constraint is the only constraint in the MIP
Model, the decision variables and constraints (7) are not needed in the model.
Without them, the resulting model is a network flow formulation that can be
solved by a specialized algorithm [23].

Thus, introducing a MIP regular constraint to a MIP model induces the addi-
tion of a set of flow conservation linear constraints (3)-(6) and linking constraints
(7) to the model. We use a procedure with the following signature:

AddMIPRegular(Π(Q,Σ,δ,q0, F), n, x, w, M),

to add the linear constraints associated with a MIP regular constraint to a
model M , given a DFA Π , the decision variables x subject to the constraint,
the length of the sequence n formed by these variables and the amount of flow
w entering the graph.

Example 2. Figure 3 is the graph for MIP regular(x1, x2, . . . , x5, Π), where Π is
the DFA presented in Figure 1. With the domains of Example 1, the constraint
would add all the flow conservation constraints related to this graph and the
following “linking” constraints to the MIP model:

x1a = s1a1 x2a = s2a2 x3a = s3a2 + s3a3 x4a = s4a3 + s4a4 x5a =s5a3 + s5a4
x1b = 0 x2b = s2b2 x3b = s3b2 + s3b3 x4b = s4b2 + s4b3 x5b = 0
x1c = s1c1 x2c = s2c5 x3c = s3c5 x4c = s4c5 x5c = s5c5

Modeling the Regular Constraint with Integer Programming 35

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

s
1a1

w

t

s
1c1

s
2a2

s
2b2

s
3a2

s
2c5

s
3c5

s
4c5

s
5c5

sf
5

sf
4

w

s
3b2

s
4b2

s
3b3

s
4b3

s
3a3

s
4a3

s
5a3

s
4a4

s
5a4

Fig. 3. Layered graph for MIP regular(x1, x2, . . . , x5 , Π)

The MIP regular constraint is easily extended to a cost version by adding costs
on the decision variables in the objective function of the model.

4 Case Study

To evaluate the quality of our modeling approach for constrained sequences of
decision variables, we present computational results on employee timetabling
problems described in [24]. The benchmarks are randomly generated but are
based on data rules from a real-world timetabling problem. The demand curves
come from a retail store. The objective is to create an optimal employee timetable
for one day that satisfies the demands for each work activity and the work reg-
ulation rules. For our experiments, we used datasets with 1 or 2 work activities.
For each of these datasets, 10 instances are available.

4.1 Problem Definition

The one day planning horizon is decomposed into 96 periods of 15 minutes each.
Let us introduce the following notations before we define the problem:

– I : set of available employees.
– W : set of work activities.
– A : set of all activities (A = W ∪ {l, p, o})

where l = lunch, p = break, o = rest.
– T = {1, 2, . . . , n} : set of periods. T ′ = T − {1}.
– Ft ⊆ W : set of activities that are not allowed to be performed at period

t ∈ T .
– cat: cost for an employee to cover an activity a ∈ W − Ft at period t ∈ T .

36 M.-C. Côté, B. Gendron, and L.-M. Rousseau

Work Regulation Rules

1. Activities a ∈ Ft are not allowed to be performed at period t ∈ T .
2. If an employee is working, he must cover between 3 hours and 8 hours of

work activities.
3. If a working employee covers at least 6 hours of work activities, he must have

two 15 minute-breaks and a lunch break of 1 hour.
4. If a working employee covers less than 6 hours of work activities, he must

have a 15 minute break, but no lunch.
5. If performed, the duration of any activity a ∈ W is at least 1 hour (4

consecutive periods).
6. A break (or lunch) is necessary between two different work activities.
7. Work activities must be inserted between breaks, lunch and rest stretches.
8. Rest shifts have to be assigned at the beginning and at the end of the day.

Demand Covering

1. The required number of employees for activity a ∈ W −Ft at period t ∈ T is
dat. Undercovering and overcovering are allowed. The cost of undercovering
activity a ∈ W − Ft at period t ∈ T is c−at and the cost of overcovering
activity a ∈ W − Ft at period t ∈ T is c+

at.

The following sections present two ways of modeling this problem. The first
model is a classical MIP formulation that does not exploit the MIP regular
constraint. The second model uses the MIP regular constraint.

4.2 A Classical MIP Model

Decision Variables

xiat =
{

1, if employee i ∈ I covers activity a ∈ A at period t ∈ T ,
0, otherwise.

Work Regulation Rules

Rule 1:

xiat = 0, i ∈ I, t ∈ T, a ∈ Ft. (10)

Rule 2:

wi =
{

1, if employee i ∈ I is working,
0, otherwise.

∑

a∈A

xiat = wi, i ∈ I, t ∈ T, (11)

12wi ≤
∑

t∈T

∑

a∈W−Ft

xiat ≤ 32wi, i ∈ I. (12)

Modeling the Regular Constraint with Integer Programming 37

Rules 3 and 4:

ui =
{

1, if employee i covers at least 6 hours of work activities,
0, otherwise.

∑

t∈T

∑

a∈W−Ft

xiat − 8ui ≤ 24, i ∈ I, (13)

∑

t∈T

∑

a∈W−Ft

xiat ≥ 23ui, i ∈ I, (14)

∑

t∈T

xipt = ui + wi, i ∈ I, (15)

∑

t∈T

xilt = 4ui, i ∈ I. (16)

Rule 5:

viat =
{

1, if employee i ∈ I starts activity a ∈ A at period t ∈ T ,
0, otherwise.

viat ≥ xiat − xia(t−1), i ∈ I, t ∈ T, a ∈ W − Ft ∪ {o} , (17)
viat ≤ xiat, i ∈ I, t ∈ T, a ∈ W − Ft ∪ {o} , (18)

viat ≤ 1 − xia(t−1), i ∈ I, t ∈ T, a ∈ W − Ft ∪ {o} , (19)
xilt′ ≥ vilt, i ∈ I, t ∈ T, t′ = t, t + 1, t + 2, t + 3, (20)

xiat′ ≥ viat, i ∈ I, t ∈ T, t′ = t, t + 1, t + 2, t + 3, a ∈ W − Ft. (21)

Rule 6:

viat ≤ 1 −
∑

a′∈W−Ft−1

xia′(t−1), i ∈ I, t ∈ T ′, a ∈ W − Ft. (22)

Rule 7:

xipt ≤ 1 − xil(t−1), i ∈ I, t ∈ T ′, (23)

xipt ≤
∑

a∈W−Ft−1

xia(t−1), i ∈ I, t ∈ T ′, (24)

xipt ≤
∑

a∈W−Ft+1

xia(t+1), i ∈ I, t ∈ T ′, (25)

vilt ≤ 1 − xip(t−1) , i ∈ I, t ∈ T ′, (26)

vilt ≤
∑

a∈W−Ft−1

xia(t−1), i ∈ I, t ∈ T ′, (27)

vilt ≤
∑

a∈W−Ft+1

xia(t+1), i ∈ I, t ∈ T ′. (28)

38 M.-C. Côté, B. Gendron, and L.-M. Rousseau

Rule 8:

v−it =

⎧
⎨

⎩

1, if employee i ∈ I covers at least one working activity
beginning before period t ∈ T ;

0, otherwise.

v+
it =

⎧
⎨

⎩

1, if employee i ∈ I covers at least one working activity
beginning after period t ∈ T ;

0, otherwise.

v−it ≤
∑

t−<t

∑

a∈W−Ft−

viat− , i ∈ I, t ∈ T ′, (29)

v−it ≥
∑

a∈W−Ft−

viat− , i ∈ I, t ∈ T, t− < t, (30)

v+
it ≤

∑

t+>t

∑

a∈W−Ft+

viat+ , i ∈ I, t ∈ T ′, (31)

v+
it ≥

∑

a∈W−Ft+

viat+ , i ∈ I, t ∈ T, t+ > t, (32)

xiot ≤ (1 − v−it) + (1 − v+
it), i ∈ I, t ∈ T. (33)

Demand Covering

∑

i∈I

xiat − s+
at + s−at = dat, t ∈ T, a ∈ W − Ft. (34)

Objective Function

min
∑

t∈T

∑

a∈W−Ft

(
∑

i∈I

catxiat + c+
ats

+
at + c−ats

−
at). (35)

4.3 A MIP Regular Model

To observe the impact of modeling with the MIP regular constraint, we include
several rules of the problem in a DFA and we formulate the other rules and the
objective function as stated in the previous section. Work regulation rules 1 to
4 and demand covering constraints are formulated as in the classical model, and
work regulation rules 5 to 8 are included in the DFA. We use the DFA suggested
in [21] for the same problem. The DFA presented in Figure 4 is for the problem
with two work activities (a and b on the Figure). It is easily generalized for any
number of work activities. Let us denote Πn the DFA for the problem with n
work activities.

We insert a MIP regular constraint for each employee i ∈ I to the model.
This constraint ensures that the covering of the activities a ∈ A for each t ∈ T
for any employee i is a word recognized by the DFA Π|W |.

AddMIPRegular(Π|W |, |T |, xi, wi, M), ∀i ∈ I. (36)

Modeling the Regular Constraint with Integer Programming 39

a a a

a

b b b

l l l

p

l

a

l

b

a

b

a

b o

o

oo

b
p

Fig. 4. DFA Π2 for 2 activities

where M is the model presented in the previous section without work regulation
constraints 5 to 8. Specifically, the output of the procedure gives the model M
with the following variables and constraints:

si
taqk

= amount of flow on the arc leaving the node qk ∈ N t of layer t ∈ T
with activity value a ∈ A for employee i ∈ I.

sf i
qk

= amount of flow leaving the node qk ∈ Nn+1 for employee i ∈ I.

∑

a∈Ω10

si
1jq0

= wi, ∀i ∈ I, (37)

∑

(a,q′
k)∈Δtk

si
(t−1)aq′

k
=

∑

a∈Ωtk

si
taqk

, ∀i ∈ I, t ∈ T ′, qk ∈ N t, (38)

∑

(a,q′
k)∈Δ(n+1)k

si
naq′

k
= sf i

qk
, ∀i ∈ I, qk ∈ Nn+1, (39)

∑

qk∈Nn+1

sf i
qk

= wi, i ∈ I, (40)

xiat =
∑

qk∈Σta

si
taqk

, ∀i ∈ I, t ∈ T, a ∈ A, (41)

si
taqk

∈ {0, 1} i ∈ I, t ∈ T, qk ∈ N t, a ∈ Ωtk, (42)

sf i
qk

∈ {0, 1} i ∈ I, qk ∈ Nn+1, (43)

where Δtk={(a, q′k)|(q′k, a, qk) ∈ inArcs[t][k]}, Ωtk={a|(qk, a,) ∈ outArcs[t][k]},
Σta = {qk|(qk, a,) ∈ outArcs[t][k]}.

40 M.-C. Côté, B. Gendron, and L.-M. Rousseau

4.4 Computational Results

Experiments were run on a 3.20 GHz Pentium 4 using the MIP solver CPLEX
10.0. All results obtained within the 3600 seconds elapsed time limit are within
1% of optimality. Table 1 presents the results for the problem described before
with one work activity. For the two work-activity problems, we only show results
for the MIP regular model in Table 2 as experiments on the classical model did
not give any integer results within the time limit. In the tables, |C| and |V | are
the number of constraints and the number of variables after CPLEX presolve
algorithm, Time is the elapsed execution time in seconds, Cost is the solution
cost and Gap is the gap between the initial LP lower bound, ZLP , and the value
of the best known solution to the MIP model, ZMIP :

Gap =
(

ZMIP −ZLP

ZLP

)
× 100

The symbol “>” in the Time column means that no integer solution was found
within the time limit.

Table 1. Results for the classical MIP model and the MIP regular model for 1 work
activity

Classical MIP model MIP regular model
Id |C| |V | Time Cost Gap |C| |V | Time Cost Gap

1 29871 4040 1706,36 172,67 24,31 1491 1856 1,50 172,67 24,31
2 56743 5104 > 2719 3976 1029,01 164,58 1,01
3 56743 5104 > 2719 3976 393,96 169,44 0,36
4 45983 4704 3603,98 149,42 13,49 2183 3144 39,89 133,45 1,36
5 40447 4360 3603,99 152,47 6,07 1915 2728 10,41 145,67 0,87
6 40447 4360 3603,70 135,92 5,28 1915 2728 20,36 135,06 1,49
7 45551 4608 > 2183 3144 6,25 150,36 0,73
8 56743 5104 > 2719 3976 274,92 148,05 0,58
9 36175 4156 3603,84 182,54 28,11 1759 2416 15,47 182,54 28,11
10 45983 4704 3603,91 153,38 5,09 2183 3144 5,50 147,63 0,95

The experiments on the one work-activity instances show that the MIP
regular modeling approach significantly decreases computational time in com-
parison with the classical MIP formulation for the given employee timetabling
problem. It is also interesting to observe that the use of the MIP regular con-
straint reduces the model size.

With our approach, within the one hour time limit, we solved all the instances
to optimality for the one work-activity problems with an average execution time
of 180 seconds. For the two work-activity problems, six instances were solved to
optimality within one hour with an average execution time of 550 seconds. These
results are competitive with those of the branch-and-price approach described in
[21]. Indeed, as reported in [21], for the one work-activity problems, 8 instances
are solved to optimality by the branch-and-price with an average of 144 seconds

Modeling the Regular Constraint with Integer Programming 41

Table 2. Results for the MIP regular model for 2 work activities

Id |C| |V | Time Cost Gap

1 3111 5084 623 201,78 0,00
2 3779 6192 3600,64 214,42 1,37
3 3991 6412 748,94 260,8 1,00
4 4475 7512 1128,73 245,87 1,00
5 3559 5668 3600,53 412,31 10,77
6 3879 6116 107,75 288,88 0,91
7 3199 4972 45,44 232,14 12,29
8 5799 9740 643,73 536,83 0,59
9 4583 7680 3600,61 309,69 3,92
10 4667 7584 3600,55 265,67 2,12

of computation time, while for the two work-activity problems, 8 instances are
solved to optimality by the same approach with an average execution time of
394 seconds.

An asset of our method over the approach suggested in [21] is the very little
development time needed. Once the model using MIP regular is automatically
translated into a MIP model, any existing MIP solver can be used to solve it.

5 Conclusion

We presented a new MIP modeling approach for sequences of decision vari-
ables inspired by the CP regular constraint. As for the CP constraint, the MIP
regular constraint uses a DFA to express rules over constrained sequences of
variables. It then gives a flow formulation of the layered graph built for the
consistency algorithm of the regular constraint. We compared our modeling
approach to a classical MIP formulation on an employee timetabling problem.
Computational results on instances of this problem showed that the use of the
MIP regular constraint to model the subset of constraints on sequences of vari-
ables, significantly improves solution times.

The idea of using global constraints in MIP has been considered before. In
particular, Achterberg [25] present a programming system (SCIP) to integrate
CP and MIP based on a branch-and-cut-and-price framework that features global
constraints (see also the references therein for other similar contributions). The
MIP regular constraint formulation is a new contribution in this direction to
allow MIP to benefit from CP. A natural next step in this trend would be to
formulate a MIP version of the grammar constraints introduced in [26] and [22].

Acknowledgments. We thank Marc Brisson for his help with the implemen-
tation and experiments.

42 M.-C. Côté, B. Gendron, and L.-M. Rousseau

References

1. Pesant, G.: A regular membership constraint for finite sequences of variables. Proc.
of CP’04, Springer-Verlag LNCS 3258 (2004) 482–495

2. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
A review of applications, methods and models. European Journal of Operational
Research 153 (2004) 3–27

3. Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An annotated
bibliography of personnel scheduling and rostering. Annals of Operations Research
127 (2004) 21–144

4. Dantzig, G.: A comment on Edie’s traffic delay at toll booths. Operations Research
2 (1954) 339–341

5. Segal, M.: The operator-scheduling problem: A network-flow approach. Operations
Research 22 (1974) 808–823

6. Moondra, B.: An LP model for work force scheduling for banks. Journal of Bank
Research 7 (1976) 299–301

7. Bechtolds, S., Jacobs, L.: Implicit optimal modeling of flexible break assigments.
Management Science 36 (1990) 1339–1351

8. Bechtolds, S., Jacobs, L.: The equivalence of general set-covering and implicit
integer programming formulations for shift scheduling. Naval Research Logistics
43 (1996) 223–249

9. Thompson, G.: Improved implicit modeling of the labor shift scheduling problem.
Management Science 41 (1995) 595–607

10. Aykin, T.: Optimal shift scheduling with multiple break windows. Management
Science 42 (1996) 591–602

11. Brusco, M., Jacobs, L.: Personnel tour scheduling when starting-time restrictions
are present. Management Science 44 (1998) 534–547

12. Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. European Journal of
Operational Research 4(1) (1980) 24–30

13. Balakrishan, A., Wong, R.: Model for the rotating workforce scheduling problem.
Networks 20 (1990) 25–42

14. Isken, M.: An implicit tour scheduling model with applications in healthcare.
Annals of Operations Research, Special Issue on Staff Scheduling and Rostering
128 (2004) 91–109

15. Çezik, T., Günlük, O., Luss., H.: An integer programming model for the weekly
tour scheduling problem. Naval Research Logistic 48(7) (1999)

16. Millar, H., Kiragu, M.: Cyclic and non-cyclic scheduling of 12 h shift nurses by
network programming. European Journal of Operational Research 104(3) (1998)
582–592

17. Ernst, A., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, h., Sier, D.: Rostering
ambulance officers. Proceedings of the 15th National Conference of the Australian
Society for Operations Research, Gold Coast (1999) 470–481

18. Sodhi, M.: A flexible, fast, and optimal modeling approach applied to crew rostering
at London Underground. Annals of Operations Research 127 (2003) 259–281

19. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and
computation. Addison Wesley (1979)

20. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft
global constraints. Journal of Heuristics 12(4-5) (2006) 347–373

21. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4) (2006) 315–333

Modeling the Regular Constraint with Integer Programming 43

22. Quimper, C.G., Walsh, T.: Global grammar constraints. Proc. of CP’06, Springer-
Verlag LNCS 4204 (2006) 751–755

23. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall (1993)
24. Demassey, S., Pesant, G., Rousseau, L.M.: Constraint programming based column

generation for employee timetabling. Proc. 2th Int. Conf. on Intergretion of AI
and OR techniques in Constraint Programming for Combinatorial Optimization
Problems - CPAIOR’05, Springer-Verlag LNCS 3524 (2005) 140–154

25. Achterberg, T.: SCIP - a framework to integrate constraint and mixed in-
teger programming. Technical Report 04-19, Zuse Institute Berlin (2004)
http://www.zib.de/Publications/abstracts/ZR-04-19/.

26. Sellmann, M.: The theory of grammar constraints. Proc. of CP’06, Springer-Verlag
LNCS 4204 (2006) 530–544

http://www.zib.de/Publications/abstracts/ZR-04-19/

Hybrid Local Search for Constrained Financial

Portfolio Selection Problems

Luca Di Gaspero1, Giacomo di Tollo2, Andrea Roli3, and Andrea Schaerf1

1 DIEGM, Università degli Studi di Udine, via delle Scienze 208,
I-33100, Udine, Italy

{l.digaspero,schaerf}@uniud.it
2 Dipartimento di Scienze, Università “G.D’Annunzio”, viale Pindaro 42,

I-65127, Pescara, Italy
ditollo@sci.unich.it

3 DEIS, Alma Mater Studiorum Università di Bologna, via Venezia 52,
I-47023 Cesena, Italy
andrea.roli@unibo.it

Abstract. Portfolio selection is a relevant problem arising in finance
and economics. While its basic formulations can be efficiently solved
through linear or quadratic programming, its more practical and realistic
variants, which include various kinds of constraints and objectives, have
in many cases to be tackled by approximate algorithms. In this work, we
present a hybrid technique that combines a local search, as master solver,
with a quadratic programming procedure, as slave solver. Experimental
results show that the approach is very promising and achieves results
comparable with, or superior to, the state of the art solvers.

1 Introduction

The portfolio selection problem consists in selecting a portfolio of assets that
provides the investor a given expected return and minimises the risk. One of the
main contributions in this problem is the seminal work by Markowitz [25], who
introduced the so-called mean-variance model, which takes the variance of the
portfolio as the measure of investor’s risk. According to Markowitz, the portfolio
selection problem can be formulated as an optimisation problem over real-valued
variables with a quadratic objective function and linear constraints.

In this paper we consider the basic objective function introduced by Marko-
witz, and we take into account two additional constraints: the cardinality con-
straint, which limits the number of assets, and the quantity constraint, which
fixes minimal and maximal shares of each asset included in the portfolio. For an
overview of the formulations presented in the literature we forward the interested
reader to [7].

We devise a hybrid solution based on a local search metaheuristic (see, e.g.,
[13]) for selecting the assets to be included in the portfolio, which at each step
resorts to a quadratic programing (QP) solver for computing the best allocation
for the chosen assets. The QP procedure implements the Goldfarb-Idnani dual
algorithm [11] for strictly convex quadratic programs.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 44–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 45

The use of a hybrid solver has been (independently) proposed also by Moral-
Escudero et al. [26], who make use of genetic algorithms instead of local search
for the determination of the discrete variables.

The paper is organised as follows: In Section 2 we introduce the problem for-
mulation and in the following section (3) we succinctly review the most relevant
works that describe metaheuristic techniques applied to formulations closely re-
lated to the one discussed in this paper. In Section 4 we present our hybrid solver
detailing its components and Section 5 collects the results of the experimental
analysis we performed. Finally, in Section 6, we draw some conclusions and point
out our plans for further work.

2 Problem Definition

Following Markowitz [25], we are given a set of n assets, A = {a1, . . . , an}.
Each asset ai has an associated real-valued expected return (per period) ri, and
each pair of assets 〈ai, aj〉 has a real-valued covariance σij . The matrix σn×n is
symmetric and the diagonal elements σii represent the variance of assets ai. A
positive value R represents the desired expected return. The values ri and σij

are usually estimated from past data and are relative [to] one fixed period of
time.

A portfolio is a vector of real values X = {x1, . . . , xn} such that each xi

represents the fraction invested in the asset ai. The value
∑n

i=1
∑n

j=1 σijxixj

represents the variance of the portfolio, and is considered as the measure of the
risk associated with the portfolio. Whilst the initial formulation by Markowitz
[25] was a bi-objective optimisation problem, in many contexts financial op-
erators prefer to tackle a single-objective version, in which the problem is to
minimise the overall variance, ensuring the expected return R. The formulation
of the basic (unconstrained) problem is thus the following.

min f(X) =
n∑

i=1

n∑

j=1

σijxixj

s.t.

n∑

i=1

rixi ≥ R (1)

n∑

i=1

xi = 1 (2)

0 ≤ xi ≤ 1 (i = 1, . . . , n) (3)

This is a quadratic programming problem, and nowadays it can be solved
optimally using available tools despite the NP-completeness of the underlying
decision problem [20].

Since R can be considered a parameter of the problem, solvers are usually
compared over a set of instances, each with a specific value of minimum required
expected return. By solving the problem as a function of R, ranging over a finite

46 L. Di Gaspero et al.

Fig. 1. Unconstrained and constrained efficient frontier

and discrete domain, we obtain the so-called unconstrained (Pareto) efficient
frontier (UEF), that gives for each expected return the minimum associated
risk. The UEF for one of the benchmark instances employed in this study is
provided in Figure 1 (the lowest black solid line).

Although the classical Markowitz’s model is extremely useful from the the-
oretical point of view, dealing with real-world financial markets imposes some
additional constraints that are going to be considered in this work. In order to
model them correctly, we need to add to the formulation a vector of n binary
decision variables Z such that zi = 1 if and only if asset i is in the solution (i.e.,
xi > 0).

Cardinality constraint: The number of assets that compose the portfolio is
bounded: we give two values kmin and kmax (with 1 ≤ kmin ≤ kmax ≤ n)
such that:

kmin ≤
n∑

i=1

zi ≤ kmax (4)

Quantity constraints: The quantity of each asset i that is included in the
portfolio is limited within a given interval: we give a minimum εi and a
maximum δi for each asset i, such that:

xi = 0 ∨ εi ≤ xi ≤ δi (i = 1, . . . , n) (5)

Notice that the minimum cardinality constraints are especially meaningful in
presence of constraints on the minimum quantity, otherwise they can be satisfied
by infinitesimal quantities.

We call CEF the analogous of the UEF for the constrained problem. In Fig-
ure 1 we plot the CEF found by our solver for the values εi = 0.01, δi = 1 (for

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 47

i = 1, . . . , n), kmin = 1, and kmax varying from 4 to 12. For higher values
of kmax the cardinality constraint reduces its effect and the curve is almost
indistinguishable from the UEF, indeed the distance among the CEF and the
UEF1 becomes smaller than 10−3 for the instance at hand.

Constraints 4 and 5 make it intractable to solve real-world instances of the
problem with proof of optimality [14]. Therefore, either simplified models are
considered, such as formulations with linear objective function [21, 22], or ap-
proximate methods are applied.

3 Related Work

Local search approaches have been widely applied to portfolio selection problems
under many different formulations. The first work on this subject appearing in
the literature is due to Rolland [30], who presents an implementation of Tabu
Search to tackle the unconstrained formulation. This formulation is considered
also in the implementation of evolutionary techniques in [2, 18, 19]. The use of
local search techniques for the constrained portfolio selection problem has been
proposed by several authors, including Chang et al. [4], Gilli and Këllezi [9] and
Schaerf [31].

The cited works however use local search as a monolithic solver, exploring
a search space composed of both continuous and discrete variables. Conversely,
our hybrid solver focuses on the discrete variables, leaving the determination
of the continuous ones to the QP solver. In addition, we consider here a more
general problem w.r.t. the cited three papers, including also the possibility to
specify a minimum number of assets (and not only the maximum).

Among the population-based methods developed for tackling the constrained
formulation, we mention Streichert et al. [33], in which the cardinality con-
strained variant is considered, and memetic algorithm approaches introduced
in [12, 15, 24]. These strategies, by being inherently effective in diversifying the
search, exhibit good performance especially in multi-objective formulations, as
shown by the family of Multi-Objective Evolutionary Algorithms [17, 8, 27, 33].
Finally, Ant Colony Optimisation has also been successfully applied to portfolio
problems modelled with the cardinality constraint in [1, 23].

For the sake of completeness, we also mention interesting hybrid heuristic
techniques based on linear programming that have been introduced in [32] and
deal with a linear objective function formulation with integer variable domains.
In this case, the value assigned to a variable represents the actual amount in-
vested in the asset. The basic idea behind these approaches is to relax the discrete
constraint on quantities, transforming the problem into a linear programming
problem and find a solution to it. Fractional asset weights are then rounded
to the closest admissible discrete quantity and a possible infeasible solution is
repaired heuristically. More robust strategies use the solution to the continuous
relaxation to feed a mixed integer-linear programming solver [16, 20].

1 Measured by what we call average percentage loss, introduced in Section 5.1.

48 L. Di Gaspero et al.

4 A Hybrid Local Search Solver for Portfolio Selection

Our master solver is based on local search, which works on the space induced
by the vector Z only. For computing the actual quantities X , it invokes the QP
(slave) solver, using as the input assets only those such that zi = 1 in the current
state.

In order to apply local search techniques we need to define the search space,
the cost function, the neighbourhood structures, and the selection rule for the
initial solution.

4.1 Search Space and Cost Function

The search space is composed of the all 2n possible configurations of Z, with the
exception of assignments that do not satisfy Constraints (4). These constraints
are therefore implicitly enforced by the local search solver by excluding them
from the search space. On the contrary, states that violate Constraints (1), (2),
(3), or (5) are included, and these constraints are passed to the QP solver that
handles them explicitly.

The QP solver receives as input only those assets included in the state under
consideration, and it produces the assignment of values to the corresponding
xi variables. For all assets ai that are not included in the state we obviously
set xi = 0. In addition, the QP solver also returns the computed risk f for the
solution produced, which represents the cost of the state.

If the QP solver is unable to produce a feasible solution it returns the special
value f = +∞ (and the values xi returned are not meaningful). In this case,
we relax Constraint (1) and we build the configuration, using only the assets
included that gives the highest return without violating the other constraints.
This construction is done by a greedy algorithm that sorts the assets by the
expected return and assigns the maximum quantity to each asset in turn, as
long as the sum is smaller than 1.

In the latter case the cost is the degree of violation of Constraint (1) multiplied
by a suitably large constant (that ensures that return related costs are always
bigger than risk related ones).

4.2 Neighbourhood Structure

The neighbourhood relation we propose is based on addition, deletion and re-
placement of an asset. A move m is identified by a pair 〈i, j〉, where ai is the
asset to be added and aj is the asset to be deleted (i, j ∈ {1, . . . , n}). The value
of i can also be 0, meaning that no asset is added. Analogously for j, if j = 0 it
means that no asset is deleted.

Notice that not all pairs m = 〈i, j〉, with i, j ∈ {0, 1, . . . , n}, correspond to a
feasible move, since some values are meaningless, e.g. inserting an asset already
present or setting both i and j to zero (null move). Moreover, moves that violates
Constraints (4) are also considered infeasible, e.g. a delete move when the number
of assets is equal to the minimum.

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 49

4.3 Initial Solution Construction

For the initial solution, we use three different strategies, that are employed at
different stages of the search (as explained in Section 4.4). For all three, we
ensure that Constraints (4) are always satisfied.

RandomCard: We draw at random a number k (between kmin and kmax), and
we insert k randomly selected assets.

MaxReturn: We build the portfolio that produces the maximum possible return
(independently of the risk)

PreviousPoint: We use the final solution of the previously computed point of
the frontier

4.4 Local Search Techniques

We implemented three local search techniques, namely Steepest Descent (SD),
First Descent (FD), and Tabu Search (TS).

The SD strategy relies on the exhaustive exploration of the neighbourhood
and the selection of the neighbour that has the minimal value of f (breaking ties
at random). The SD strategy stops as soon as no improving move is available, i.e.,
when a local minimum has been reached. FD behaves as SD with the difference
that, as soon as an improving move is found, it is selected and the exploration
of the current neighbourhood is interrupted.

For TS we use a dynamic-size tabu list to implement a short term prohibition
mechanism and the standard aspiration criterion [10]. Like for SD, we search for
the next state by exploring the full neighbourhood (excluding infeasible moves)
at each iteration.

In order to make the solvers more robust, for all techniques, we make two runs
for each value of R: one using the RandomCard initial solution construction, and
the other one starting from the best of the previous point (PreviousPoint initial
solution). For the very first point of the frontier (highest requested return and
no previous point available) we use instead the MaxReturn construction.

5 Experimental Analysis

In this section, we first present the benchmark instances and the settings of
our solver. In the following subsections, we show the comparison with all the
previous works that use the same formulation. We conclude showing a search
space analysis that tries to explain the behaviour of our solvers on the proposed
instances.

5.1 Benchmark Instances

We experimented our techniques on two groups of instances obtained from real
stock markets and used in previous works. The first is a group of five instances
taken from the repository ORlib available at the URL http://mscmga.ms.ai.

http://mscmga.ms.ai.ac.uk/~jeb/orlib/portfolio.html

50 L. Di Gaspero et al.

Table 1. The benchmark instances

Inst. Origin assets UEF

Group 1

1 Hong Kong 31 1.55936 ·10−3

2 Germany 85 0.412213 ·10−3

3 UK 89 0.454259 ·10−3

4 USA 98 0.502038 ·10−3

5 Japan 225 0.458285 ·10−3

Group 2

S1 USA (DataStream) 20 4.812528
S2 USA (DataStream) 30 8.892189
S3 USA (DataStream) 151 8.64933

ac.uk/ jeb/orlib/portfolio.html . These instances have been proposed by
Chang et al. [4] and have been studied also in [1, 26, 31]. The second group of
three instances have been provided to us by M. Schyns and are used in [5].

For the first group, a discretised UEF composed of 100 equally distributed
values for the expected return R is provided along with the data. For the second
group, we computed the discretised UEF ourselves using the QP solver with all
assets available and no additional constraints.

As in previous works, we evaluate the quality of our solutions employing
an aggregate indicator that measures the deviation of the CEF found by the
algorithms w.r.t. the UEF on the whole set of frontier points. We call this mea-
sure average percentage loss (apl) and we define it as follows: let Rl be the
expected return, V (Rl) and VU (Rl) the values of the function f returned by
the solver and the risk on the UEF, respectively, and l = 1, . . . , p where p is
the number of points of the frontier; the average percentage loss is equal to
100
p

∑p
l=1(V (Rl)−VU (Rl))/VU (Rl). Table 1 illustrates for all instances the orig-

inal market, and the average variance of the UEF.

5.2 Experimental Setting of the Solvers

Experiments were performed on an Apple iMac computer equipped with an Intel
Core 2 Duo (2.16 GHz) processor and running Mac OS X 10.4; the SD, FD and
TS metaheuristics have been coded in C++ exploiting the framework EasyLo-

cal++ [6], the QP solver has also been coded in C++ and is made publicly
available from one of the authors’ website2. The executables were obtained using
the GNU C/C++ compiler (v. 4.0.1).

Concerning the algorithms setting, SD and FD have no parameter to be set;
for TS we tuned its parameters by means of a statistical technique called F-
race [3] and found that the algorithm is very robust with respect to parameter
setting. We set the tabu list size in the range [3 . . . 10] and we stop the execution
of TS when a maximum of 100 iterations without improvement was reached.

2 http://www.diegm.uniud.it/digaspero/

http://mscmga.ms.ai.ac.uk/~jeb/orlib/portfolio.html
http://www.diegm.uniud.it/digaspero/

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 51

5.3 Comparison with Previous Results

Due to the different formulations employed by the authors, the only papers we
can compare with are those of Schaerf [31] and Moral-Escudero et al. [26], who
employ the same set of constraints on the ORlib instances, and with Crama
and Schyns [5] who deal with a slightly different setting and with a novel set
of instances. Concerning Chang et al. [4], as already pointed out in [31], even
though they work on the ORlib instances (and with the same constraints), a fair
comparison with their solutions is not possible because the problem is solved by
taking points along the frontier that are not homogeneously distributed.

Armañanzas and Lozano [1] work on a variant of the problem for which the
values kmin and kmax coincide (i.e., kmin = kmax = K) on the ORlib instances.
However, due to what we believe is an error in the implementation of their
solution methods 3 they obtain a set of points that are infeasible w.r.t. Con-
straint (2). In details, they assign to the assets i for which zi = 1 chosen by
their ACO algorithm the quantity xi = (δi − εi)/K, therefore since they set
εi = 0.001, δi = 1 for all i = 1, . . . , n, they obtain

∑n
i=1 xi = 0.999 instead of

1. For this reason we could not compare our solvers with [1], nevertheless we
are going to present some results on the behaviour of one of our solvers on the
formulation proposed in that paper.

Comparison with Schaerf [31] and Moral-Escudero et al. [26]. For this
comparison, we set the constraint values exactly as in [26, 31]: εi = 0.01 and
δi = 1 for i = 1, . . . , n, and kmax = 10 for all instances. The minimum cardinality
is not considered in the cited work, and therefore we set it to kmin = 1 (i.e., no
limitation).

Table 2 shows best results and running times obtained by our three solvers
in comparison with previous work. Since Moral-Escudero et al. [26] report only
the best outcomes of their solvers, in order to fairly compare with them we have
to present the results as the minimum average percentage loss w.r.t. the UEF
found by the algorithm.

The results of our solvers are the best CEFs found in 30 trials of the algorithm
on each instance and the running times reported are those of the best trial
(exactly as in [26]). Running times of [31] are obtained re-running Schaerf’s
software on our machine, those of Moral-Escudero et al. are taken from their
paper, and are obtained using a PC having about the same performances.

Table 2 shows that we obtain results superior to [31] both in terms of risk
and running times. This suggests that the hybrid solver outperforms monolithic
local search ones. Regarding [26], we obtain with SD exactly the same results of
their best solver, but in a much shorter time (on a comparable machine).

As already pointed out in [31], even though Chang et al. [4] solve the same
instances (and with the same constraints), a fair comparison with their solutions
is not possible. This is because they consider the CEF differently. Specifically,
they do not solve a different instance for each value of R, but (following Perold
[28]), they reformulate the problem without Constraint (1) and with the following
3 We found the error in our analysis of the data provided to us by J. Lozano.

52 L. Di Gaspero et al.

Table 2. Comparison of results with Schaerf [31] and Moral-Escudero et al. [26]

FD + QP SD + QP TS + QP GA + QP [26] TS [31]
Inst. min apl time min apl time min apl time min apl time min apl time

1 0.00366 1.3s 0.00321 4.3s 0.00321 17.2s 0.00321 415.1s 0.00409 251s
2 2.66104 5.3s 2.53139 20.3s 2.53139 61.3s 2.53180 552.7s 2.53617 531s
3 2.00146 5.4s 1.92146 23.6s 1.92133 69.5s 1.92150 886.3s 1.92597 583s
4 4.77157 7.6s 4.69371 27.6s 4.69371 80.0s 4.69507 1163.7s 4.69816 713s
5 0.24176 15.7s 0.20219 69.5s 0.20210 210.7s 0.20198 1465.8s 0.20258 1603s

objective function: f(X) = λf1(X) + (1 − λ)f2(X). The problem is then solved
for different values of λ, and what they obtain is the solution for a set of values
for R which are not homogeneously distributed.

Comparison with Crama and Schyns [5]. Since the results of Crama and
Schyns [5] are presented in graphical form and make use of a slightly different
cost function (i.e., they consider the standard deviation instead of the variance as
the risk measure) we re-run their solver4 on the three instances employed in their
experimentation employing the same parameter setting reported in their paper.
The constraints set in this experiment are as follows: kmin = 1, kmax = 10,
εi = 0, and δi = 0.25.

In Table 3 we present the outcome of this comparison. For each algorithm we
report in three columns the average and the standard deviation (in parentheses)
of the average percentage loss w.r.t. the UEF, and the average time spent by the
algorithm. The data was collected by running 30 times each algorithm on each
instance and computing the whole CEF.

From the table it is clear that, in terms of solution quality, the family of
our solvers outperforms the SA approach of Crama and Schyns. Looking at the
times, we can see that SA, in general, exhibits shorter running times than our hy-
brid SD and TS approaches. This can be explained by the strategy employed by
both our algorithms that thoroughly explore the full neighbourhood of each solu-
tion whereas the SA randomly picks out only some neighbours thus saving time
in the evaluation of the cost function. Moreover, the slave QP procedure is more
time-consuming than the solution evaluation carried out by Crama and Schyns,
however it allows us a higher accuracy on the assignment of the assets.

Results for fixed cardinality portfolios. As mentioned previously, even
though we cannot compare our results with the work of Armañanzas and Lozano
[1], we decided to show some results of the SD solver on the ORlib instances by
setting the cardinality constraints so that they force the constructed portfolio
to have exactly kmin = kmax = K assets as in [1]. The quantity constraints are
set as in the first set of experiments, i.e. εi = 0.01, and δi = 1.

In Figure 2 we plot the behaviour of the average percentage loss found by
our SD + QP solver at different values of K on a selected pair of instances. The
4 The executable was kindly provided to us by M. Schyns.

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 53

Table 3. Comparison of results with Crama and Schyns [5]

FD + QP SD + QP TS + QP SA [5]
Inst. apl time apl time apl time apl time

S1 0.72 (0.094) 0.3s 0.35 (0.0) 1.4s 0.35 (0.0) 4.6s 1.13 (0.13) 3.2s

S2 1.79 (0.22) 0.5s 1.48 (0.0) 3.1s 1.48 (0.0) 8.5s 3.46 (0.17) 5.4s

S3 10.50 (0.51) 10.2s 8.87 (0.003) 53.3s 8.87 (0.0003) 124.3s 16.12 (0.43) 30.1s

0 10 20 30 40 50

0
20

40
60

80

K

av
er

ag
e

pe
rc

en
ta

ge
 lo

ss

k_min = 1, k_max = K
k_min = k_max = K

(a) Results on instance 2.

10 20 30 40

0
5

10
15

20
25

30
35

K

av
er

ag
e

pe
rc

en
ta

ge
 lo

ss

k_min = 1, k_max = K
k_min = k_max = K

(b) Results on instance 5.

Fig. 2. Average percentage loss found by our SD + QP solver varying K

curve is compared with the average percentage loss computed by the same solver
but relaxing the minimum cardinality constraint to kmin = 1 (i.e., just allowing
to include an increasing number of assets in the portfolios, but not obliging the
solver to compel to a fixed cardinality).

From the pictures we can notice an interesting phenomenon: the two curves
are almost indistinguishable up to a value of K for which the fixed cardinality
solutions tend to have an higher average percentage loss. In a sense, this sort
of minimum represent the best compromise in the cardinality, i.e., the optimal
fixed number of assets K that minimises the deviation from the best achievable
returns (i.e, the UEF values).

5.4 Search Space Analysis

We study the search space main characteristics of the instances composing the
benchmarks with the aim of providing an explanation for the observed algorithm
behaviour and elaborating some guidelines for understanding the hardness of
an instance when tackled with our hybrid local search. Once cardinality con-
straints are set, in general we are interested in studying the characteristics
of the search space of the single instances of the problem along the frontier,
i.e., at fixed values of return R. Among the 100 points composing the fron-
tier, we took five samples homogeneously distributed along the frontier, in order

54 L. Di Gaspero et al.

to estimate the characteristics of the search spaces encountered by our solver
along the whole frontier. Moreover, constrained instances with different val-
ues of kmin and kmax have been considered. In our experiments, we chose
(kmin, kmax) ∈ {(3, 3), (6, 6), (10, 10), (1, 3), (1, 6), (1, 10)}.

One of the most relevant search space characteristics is the number of global
and local minima. The number of local minima is usually taken as an estima-
tion of the ruggedness of the search space, that, in turn, is roughly negatively
correlated with local search performance [13]. In order to estimate the number
of minima in an instance, we run a deterministic version of SD (called SDdet)5

starting from initial states either produced by complete enumeration (for very
small size instances) or by uniformly sampling the search space.

Our analysis shows that the instances of the benchmarks have a very small
number of local minima, and only one global minimum (i.e., either a certified
global minimum, when exhaustive enumeration is performed, or the best known
solution, otherwise). Most of the analysed instances have only one minimum and
the other instances have not more than six minima. We observed that the latter
cases occur usually at low values of return R. Instance 4 is the one with the
greatest number of local minima, while the remaining instances have very few
cases with local minima.

This analysis may provide an explanation for the very similar performance
exhibited by SD and TS in terms of solution quality. To strengthen this argu-
ment, we also studied global and local minima basins of attraction, in order to
estimate the probability of reaching a global minimum [29]. Given a determin-
istic algorithm such as SDdet, the basin of attraction B(s) of a minimum s, is
defined as the set of states that, taken as initial states, give origin to trajectories
that ends at point s. The cardinality of B(s) represents its size (in this context,
we always deal with finite spaces). The quantity rBOA(s), defined as the ratio
between the size of B(s) and the search space size, is an estimation of the reach-
ability of state s. If the initial solution is chosen at random, the probability of
finding a global optimum s∗ is exactly equal to rBOA(s∗). Therefore, the higher
is this ratio, the higher is the probability of success of the algorithm. Both SD
and TS incorporate stochastic decision mechanisms and TS is also able to escape
from local minima, therefore the estimation of basins of attraction size related to
SDdet provides a lower bound on the probability of reaching the global optimum
when using SD and TS.

The outcome of our analysis is that global minima have usually a quite large
basin of attraction. Representative examples of these results are depicted in Fig-
ures 3a, 3b, 3c and 3d; segments represent the basins of attraction: their length
corresponds to rBOA and their y-value is the objective value of the corresponding
minimum. We can note that global minima have a quite large basin of attraction
whose rBOA ranges from 30% (in Figure 3c) to 60% (in Figure 3a).

It is worth remarking that these large basins are specific for our hybrid solver,
and this is not the case for monolithic local search ones. The presence of large
basins of attraction for the global optimum suggests that the best strategy for

5 Ties are broken by enforcing a lexicographic order of states.

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 55

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

03
08

0.
00

03
12

0.
00

03
16

0.
00

03
20

rBOA

ris
k

(a) Instance 4: kmin = kmax = 3,
R = 0.0037524115.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

01
60

0.
00

01
62

0.
00

01
64

rBOA

ris
k

(b) Instance 4: kmin = 1, kmax = 6,
R = 0.0019368822.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

01
79

0
0.

00
01

79
4

rBOA

ris
k

(c) Instance 4: kmin = 1, kmax = 10,
R = 0.0037524115.

0.0 0.2 0.4 0.6 0.8 1.0

1.
09

0
1.

09
5

1.
10

0
1.

10
5

1.
11

0

rBOA

ris
k

(d) Instance S3: kmin = 1, kmax = 6,
R = 0.260588.

Fig. 3. Basins of attraction of minima on two benchmark instances with different
cardinality and return constraints

tackling these instances is simply to run SD with random restarts, and that there
is no need for a more sophisticated solver such as TS.

However, since TS has better exploration capabilities than SD, it could still
show superior performances on other, possibly more constrained, instances. In-
deed, it is possible construct artificial instances with a large number of local
minima and a small basin for the global one; it is straightforward to show that
for such instances TS performs much better than SD for all values of R.

6 Conclusions and Future Work

Experiments show that our solver is comparable with (or superior to) the state of
the art for the less constrained problem formulation (no minimum). Comparison
for the general problem are subject of ongoing work. In the future, we plan to
adapt this approach to tackle other formulations, such as the discrete formulation
that is particularly interesting for some investors. This formulation enables us
to take into account aspects of real-world finance, such as transaction costs. To
this extent, instances including minimum lots will be investigated, since assets
generally cannot be purchased in any quantity and the amount of money to

56 L. Di Gaspero et al.

be invested in a single asset must be a multiple of a given minimum lot [20].
Moreover, we are going to include also asset preassignments, that will be useful
for representing investor’s subjective preferences.

We also aim at identifying difficult instances and verify whether more sophis-
ticated local search metaheuristics, such as TS, could improve on the results of
the simple SD strategy.

Acknowledgements

We thank Jose Lozano, Renata Mansini, Michael Schyns, and Ruben Ruiz-
Torrubiano for helpful clarification about their work.

References

[1] R. Armañanzas and J.A. Lozano. A multiobjective approach to the portfolio
optimization problem. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (CEC 2005), volume 2, pages 1388–1395. IEEE Press, 2005. doi:
10.1109/CEC.2005.1554852.

[2] S. Arnone, A. Loraschi, and A. Tettamanzi. A genetic approach to portfolio
selection. Neural Network World – International Journal on Neural and Mass-
Parallel Computing and Information Systems, 3(6):597–604, 1993.

[3] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. In W. B. Langdon et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002), pages 11–18,
New York, 9–13 July 2002. Morgan Kaufmann Publishers.

[4] T.-J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha. Heuristics for cardi-
nality constrained portfolio optimisation. Computers & Operations Research, 27
(13):1271–1302, 2000.

[5] Y. Crama and M. Schyns. Simulated annealing for complex portfolio selection
problems. European Journal of Operational Research, 150:546–571, 2003.

[6] L. Di Gaspero and A. Schaerf. EasyLocal++: An object-oriented framework
for flexible design of local search algorithms. Software—Practice & Experience,
33(8):733–765, 2003.

[7] G. di Tollo and A. Roli. Metaheuristics for the portfolio selection problem. Tech-
nical Report R-2006-005, Dipartimento di Scienze, Università “G. D’Annunzio”
Chieti–Pescara, 2006.

[8] L. Dioşan. A multi-objective evolutionary approach to the portfolio optimization
problem. In Proceedings of the International Conference on Computational Intel-
ligence for Modelling, Control and Automation (CIMCA 2005), pages 183–188.
IEEE Press, 2005.

[9] M. Gilli and E. Këllezi. A global optimization heuristic for portfolio choice with
VaR and expected shortfall. In P. Pardalos and D.W. Hearn, editors, Computa-
tional Methods in Decision-making, Economics and Finance, Applied Optimiza-
tion Series. Kluwer Academic Publishers, 2001.

[10] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.
[11] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly

convex quadratic programs. Mathematical Programming, 27:1–33, 1983.

Hybrid Local Search for Constrained Financial Portfolio Selection Problems 57

[12] M.A. Gomez, C.X. Flores, and M.A. Osorio. Hybrid search for cardinality con-
strained portfolio optimization. In Proceedings of the 8th annual conference on
Genetic and Evolutionary Computation,, pages 1865–1866. ACM Press, 2006. doi:
10.1145/1143997.1144302.

[13] H.H. Hoos and T. Stützle. Stochastic Local Search Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA (USA), 2005. ISBN 1-55860-
872-9.

[14] N.J. Jobst, M.D. Horniman, C.A. Lucas, and G. Mitra. Computational aspects
of alternative portfolio selection models in the presence of discrete asset choice
constraints. Quantitative Finance, 1:1–13, 2001.

[15] H. Kellerer and D.G. Maringer. Optimization of cardinality constrained portfolios
with a hybrid local search algorithm. OR Spectrum, 25(4):481–495, 2003.

[16] H. Kellerer, R. Mansini, and M.G Speranza. On selecting a portfolio with fixed
costs and minimum transaction lots. Annals of Operations Research, 99:287–304,
2000.

[17] D. Lin, S. Wang, and H. Yan. A multiobjective genetic algorithm for portfolio
selection. Working paper, 2001.

[18] A. Loraschi and A. Tettamanzi. An evolutionary algorithm for portfolio selection
within a downside risk framework. In C. Dunis, editor, Forecasting Financial
Markets, Series in Financial Economics and Quantitative Analysis, pages 275–
285. John Wiley & Sons, Chichester, UK, 1996.

[19] A. Loraschi, A. Tettamanzi, M. Tomassini, and P. Verda. Distributed genetic
algorithms with an application to portfolio selection problems. In D. W. Pearson,
N. C. Steele, and R. F. Albrecht, editors, Proceedings of the International Con-
ference on Artificial Neural Networks and Genetic Algorithms, pages 384–387.
Springer-Verlag, 1995.

[20] R. Mansini and M.G. Speranza. Heuristic algorithms for the portfolio selection
problem with minimum transaction lots. European Journal of Operational Re-
search, 114:219–233, 1999.

[21] R. Mansini and M.G. Speranza. An exact approach for portfolio selection with
transaction costs and rounds. IIE Transactions, 37:919–929, 2005.

[22] R. Mansini, W. Ogryczak, and M.G. Speranza. Lp solvable models for portfo-
lio optimization a classification and computational comparison. IMA Journal of
Management Mathematics, 14:187–220, 2003.

[23] D.G. Maringer. Optimizing portfolios with ant systems. In Proceedings of the
International ICSC congress on computational intelligence: methods and applica-
tions (CIMA 2001), pages 288–294. ISCS Academic Press, 2001.

[24] D.G. Maringer and P. Winker. Portfolio optimization under different risk con-
straints with modified memetic algorithms. Technical Report 2003–005E, Univer-
sity of Erfurt, Faculty of Economics, Law and Social Sciences, 2003.

[25] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.
[26] R. Moral-Escudero, R. Ruiz-Torrubiano, and A. Suárez. Selection of optimal in-

vestment with cardinality constraints. In Proceedings of the IEEE World Congress
on Evolutionary Computation (CEC 2006), pages 2382–2388, 2006.

[27] C.S. Ong, J.J. Huang, and G.H. Tzeng. A novel hybrid model for portfolio selec-
tion. Applied Mathematics and Computation, 169:1195–1210, October 2005.

[28] A.F. Perold. Large-scale portfolio optimization. Management Science, 30(10):
1143–1160, 1984.

58 L. Di Gaspero et al.

[29] S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Proceed-
ings of the 2nd International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CP-AI-
OR 2005), volume 3524 of Lecture Notes in Computer Science. Springer–Verlag,
2005.

[30] E. Rolland. A tabu search method for constrained real-number search: applica-
tions to portfolio selection. Working paper, 1996.

[31] A. Schaerf. Local search techniques for constrained portfolio selection problems.
Computational Economics, 20(3):177–190, 2002.

[32] M.G. Speranza. A heuristic algorithm for a portfolio optimization model applied
to the Milan stock market. Computers & Operations Research, 23(5):433–441,
1996. ISSN 0305-0548.

[33] F. Streichert, H. Ulmer, and A. Zell. Comparing discrete and continuous genotypes

on the constrained portfolio selection problem. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2004), volume 3103 of Lecture
Notes in Computer Science, pages 1239–1250, Seattle, Washington, USA, 2004.

Springer-Verlag.

The “Not-Too-Heavy Spanning Tree” Constraint

Grégoire Dooms and Irit Katriel

Department of Computer Science
Brown University

Providence, RI
{gdooms,irit}@cs.brown.edu

Abstract. We develop filtering algorithms for the Weight-Bounded Spanning
Tree (WBST (G, T, I, W)) constraint, which is defined on undirected graph
variables G and T , a scalar variable I and a vector of scalar variables W . It
specifies that T is a spanning tree of G whose total weight is at most I , where W
is a vector of the edge weights.

1 Introduction

Graphs are among the most common abstractions used for modeling real-life optimiza-
tion problems. It is therefore likely that future constraint languages will include, in ad-
dition to set variables [2,14,15,16,17,23], also graph variables [6,9,14,22], i.e., variables
whose assigned values are graphs. Such variables, of course, can only be useful if the
language also supports constraints that are defined on them and capture frequently re-
curring graph properties. Such constraints, in turn, require efficient filtering algorithms.

Filtering algorithms were developed for several graph constraints, including the
Sellmann’s shorter-paths constraint [25] , Cambazard’s simple-path constraint [5], and
Beldiceanu et al.’s unweighted tree and forest constraints [3,4]. The AllDifferent con-
straint [24] can also be viewed as a graph constraint, namely, the bipartite matching
constraint. Recently, the authors developed filtering algorihtms for the MST (G, T, W)
constraint [10], which is defined on graph variables G and T and a vector W of scalar
variables. The constraint specifies that T is a minimum spanning tree of G, while W is
a vector of the edge weights of G (hence also of T). This constraint can be useful when
modelling network design problems, in particular inverse optimization problems [12]
where we wish to identify which edges of G must or must not be present in order for
some tree to be a minimum spanning tree. It also generalizes earlier work by Aron and
Van Hentenryck [1], who partially solved a special case of the MST filtering problem:
For the case in which G is fixed but E(T) and W are not, they identify the edges that
have a support (we call these edges possible, and they call them weak).

In most network design applications, however, we do not insist on finding a spanning
tree of minimum weight. Rather, we wish to find the lightest spanning tree that satis-
fies our feasibility criteria. For instance, if we are trying to construct a communication
network, we might want to network to satisfy an arbitrary collection of constraints in
addition to being a spanning tree, such as an upper bound on its diameter (e.g., [19])
or on the maximum degree of a node (e.g., [18]) or both (e.g., [21]). The additional
constraints may exclude all minimum spanning trees of G. For applications of this kind,

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 59–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 G. Dooms and I. Katriel

the MST constraint is not useful. Rather, we need an optimization constraint, more pre-
cisely a minimization constraint. Typically, a minimization constraint has a parameter Z
that specifies an upper bound on the value of a solution. Whenever a solution satisfying
all constraints is found, the upper bound of Z is decreased to the value of this solution.
From then on, the filtering algorithm for the constraint removes values from the do-
mains of variables if they do not belong to any improving solutions. On the other hand,
when the filtering algorithm discovers a new lower bound on the value of any solution,
it communicates this to the solver by setting the lower bound of Z to this value.

In this paper we introduce the Weight-Bounded Spanning Tree constraint, abbrevi-
ated WBST (G, T, I, W), which is the optimization version of the MST constraint. It
is defined on two graph variables G and T , a scalar variable I and a vector of scalar
variables W . The constraint is satisfied if the graph T is a spanning tree of the graph
G such that the total weight of T is at most I , where the weights of all edges in G
(and hence also in T) are specified by the values in the vector W . We show that while
filtering is NP-hard for this constraint in its most general form, it can be performed very
efficiently in the special case where all graphs in the domains of G and T have the same
node-sets (but may differ in their edge-sets).

Although they are semantically close, the structures of the solutions sets of MST
and WBST are quite different and therefore the filtering algorithms developed are also
different. Perhaps the best indication of how different the two constraints are is the fact
that in the most general case, when the node-sets of G and T are not fixed, MST can be
filtered to bound consistency in polynomial time while for WBST , this task is NP-hard.

1.1 Set and Graph Variables

The value assigned to a set variable is a subset of a certain universe. For any finite
universe, one can enumerate its subsets and replace the set variable by a scalar variable
that is assigned the number of a subset instead of the subset itself. The drawback of this
approach is that it might cause an exponential blowup in the size of the description of
the domain.

A more compact representation of the domain D(x) of a set variable x is to specify
two sets of elements [15,16,23]: The set of elements that must belong to the set assigned
to x (which we call the lower bound of the domain of x and denote by D(x)) and
the set of elements that may belong to this set (the upper bound of the domain of x,
denoted D(x)). The domain itself has a lattice structure corresponding to the partial
order defined by set inclusion. In other words, for a set variable x with domain D(x) =
[D(x), D(x)], the value v(x) that is assigned to x in any solution must be a set such
that D(x) ⊆ v(x) ⊆ D(x).

As the elements of the domain are not enumerated explicitly, the filtering task is to
narrow the interval of possible sets by increasing the lower bound and decreasing the
upper bound as much as possible without losing any solutions. In other words, we need
to remove an element from the upper bound when it does not participate in any solution,
and include an element from the upper bound in the lower bound if it belongs to the set
in all solutions. Thus, to filter the domain of a set variable to bound consistency, we
need to compute the union and the intersection of all values that it may assume in a
solution.

The “Not-Too-Heavy Spanning Tree” Constraint 61

A graph can be seen as two sets V and E with an inherent constraint specifying that
E ⊆ V × V . The domain D(G) of a graph variable G is specified by two graphs: A
lower bound graph D(G) and an upper bound graph D(G), such that the domain is the
set of all subgraphs of the upper bound which are supergraphs of the lower bound.

1.2 Our Results

Let n and m be, respectively, the number of nodes and edges in the upper bounds of
the domains of G and T and let V (G) and V (T) be the node-sets of G and T . We will
assume that the domain of I and of each entry of W is an interval of rational numbers,
specified by its endpoints. When the domain of a variable contains exactly one element,
we say that the variable is fixed and denote it by a lowercase letter. We examine the
filtering task for increasingly complex special cases of the WBST constraint, beginning
with the simple case in which the graph G as well as the weight of each edge (i.e., the
entries of W) are fixed. We then gradually advance towards the most general case, in
which none of the variables are fixed. The results we obtain on filtering the different
cases are summarized below1.

Case Bound Consistency Computation
Fixed G and W O(mα(m, n))
Fixed W O(mα(m, n))
Fixed V (G) = V (T) O(mα(m, n))
No Variables are Fixed NP-hard

Roadmap. In the rest of the paper we derive the results summarized in the table above.
Note that the first two are special cases of the third, and are handled separately only to
improve exposition of the complete algorithm. In the same spirit, we begin in the next
section by describing filtering algorithms for two simple graph constraints, which will
be later reused as components of subsequent algorithms. Finally, we explain why we
have defined the WBST constraint in the way we did, in terms of how it can be used in
constraint programming.

2 Simple Graph Constraints

In this section we describe filtering algorithms for two simple graph constraints: the
Subgraph(T, G) constraint which specifies that T is a subgraph of G and the Tree(T)
constraint which holds if T is connected and acyclic.

Note that when the node-sets of G and T are fixed, WBST (G, T, I, W) is equivalent
to Subgraph(T, G)∧Tree(T)∧Weight≤(T, W, I), where Weight≤(T, W, I) specifies
that the sum of the weights of the edges of T is at most I , and W is a vector of the
edge-weights. However, the bound consistency algorithms we develop in this section
do not combine with a bound consistency algorithm for Weight≤(T, W, I) to form

1 α is the inverse-Ackerman function that describes the complexity of the Union-Find data struc-
ture [27].

62 G. Dooms and I. Katriel

a bound consistency algorithm for the WBST constraint: A value may be consistent
with each constraint individually, while it does not participate in any solution to their
conjunction. We discuss these constraints separately for didactic reasons. They allow
us to first demonstrate bound consistency computations on simple examples, and they
simplify the exposition of the complete algorithm, which uses them as subroutines.

2.1 The Subgraph(T, G) Constraint

This constraint is bound consistent when D(T) ⊆ D(G) and D(T) ⊆ D(G). A filter-
ing algorithm therefore needs to perform the following steps:

1. If D(T) �⊆ D(G), the constraint has no solution.
2. Include every node or edge of D(G) ∩ D(T) in D(G).
3. Remove every node or edge of D(T) \ D(G) from D(T).

The running time of this algorithm is linear in the sizes of D(T) and D(G). Once
computed, bound consistency can be maintained dynamically as the domains of T and
G shrink, at constant time per change2: Whenever a node or edge is removed from
D(G), it should also be removed from D(T) and if it was present in D(T) then the
constraint is inconsistent. Whenever a node or edge is placed in D(T) it should also be
placed in D(G).

2.2 The Tree(T) Constraint

If D(T) is empty, the constraint is bound consistent because any node or edge in D(T)
belongs to a tree in D(T); namely the tree consisting of a single node or a single edge.
However, filtering may be necessary if D(T) is not empty.

If D(T) is not contained in a connected component of D(T), the constraint is incon-
sistent because T cannot be connected. Otherwise, all nodes and edges that are not in
the same connected component with D(T) should be removed from D(T). Next, we
need to find bridges and articulation nodes in D(T) whose removal disconnects two
nodes from D(T). Since they must belong to the tree, we need to place them in D(T)
as well. Finally, if D(T) contains a cycle the constraint is inconsistent, and an edge
e ∈ D(T) between two nodes that belong to the same connected component of D(T)
must be removed from D(T), because including it in the tree would introduce a cycle.

All steps above can be computed in linear time [26], but dynamic maintenance of
bound consistency is not as simple as in the case of the Subgraph constraint. For in-
stance, removing an edge from D(T) may turn another edge into a bridge.

3 WBST with Fixed Graph and Edge Weights

To simplify the exposition of the algorithm, we begin with the special case in which the
variables G and W of the constraint are fixed (and are therefore denoted by lowercase

2 We assume that simple operations on the domain of a graph variable such as removing an edge
from the upper bound or inserting an upper bound edge into the lower bound, take constant
time.

The “Not-Too-Heavy Spanning Tree” Constraint 63

letters), i.e., the case WBST (g, T, I, w). Since we assume that D(G) contains exactly
one graph and the edge-weights are fixed (i.e., D(W) contains exactly one vector), we
only need to filter the domains of T and I .

3.1 A Preprocessing Step

First, the algorithm applies the bound consistency algorithms for Subgraph(T, G) and
Tree(T) described in Section 2. In the rest of this paper we will assume that bound con-
sistency is maintained for Subgraph(T, G) at no asymptotic cost, as described above.

Next, since D(T) is contained in the spanning tree in any solution, we reduce the
problem to the case in which D(T) is initially empty, as follows. We contract all edges
of D(T), in both D(T) and g. Let g′ be the graph g after this contraction. We then
subtract w(D(T)), i.e., the total weight of edges in D(T), from each of D(I) and
D(I). For any spanning tree t′ of g′ with weight w(t′), the edge-set t′ ∪ D(T) is a
spanning tree of g of weight w(t) = w(t′) + w(D(T)).

3.2 Analysis of g

Let t be an MST of g of weight w(t). We will use t to partition the edges of g into
three sets M andatory(g, D(I)), Possible(g, D(I)) and Forbidden(g, D(I)), which
are defined as follows.

Definition 1. Let g be a connected graph. The sets M andatory(g, i), Possible(g, i)
and Forbidden(g, i) contain, respectively, the edges that belong to all, some or none
of the spanning trees of g with weight at most i.

Clearly, a non-tree edge cannot belong to M andatory(g, D(I)) and a tree edge can-
not belong to Forbidden(g, D(I)). Thus, we determine which of the tree edges are
mandatory and which of the non-tree edges are forbidden. For the first task, we can use
techniques that resemble those used in Eppstein’s algorithm for finding the k smallest
spanning trees of a graph [11]. Let e ∈ t be an edge whose removal from t disconnects
t into two trees t1 and t2. Define the replacement edge rg(e) to be a minimum weight
edge in g other than e which connects a node from t1 and a node from t2. Then we
know that:

Lemma 1 ([11], Lemma 3). For any edge e in an MST t of g such that g \ {e} is
connected, (t \ {e}) ∪ {rg(e)} is an MST of g \ {e}.

Lemma 2 ([11,28]). Given a graph g and an MST t of g, the replacements rg(e) for all
edges in t can be computed in time O(mα(m, n)).

For a non-tree edge e ∈ g \ t, define the replacement edge rg(e) to be a maximum
weight edge in the unique path in t between u and v. Then we have that

Lemma 3. For any edge e /∈ t, (t ∪ {e}) \ {rg(e)} is a minimum-weight spanning tree
of g that contains the edge e.

Proof. Contract e and find an MST of the remaining graph. By the cycle property, it
will exclude one of the maximum weight edges on the cycle that was created by the
contraction.

64 G. Dooms and I. Katriel

Finding the replacement edge for every non-tree edge can be done in linear-time on
a RAM using the relevant component of the MST verification algorithm by Dixon et
al. [8] or the simplified solution by King [20]: Both algorithms use a linear-time subrou-
tine that determines the weight of the heaviest edge on the path between the endpoints
of every non-tree edge. This implies the following O(mα(m, n))-time algorithm: Find
an MST t of g and compute the replacement of every edge of g with respect to t. An
edge e ∈ t is in M andatory(g, D(I)) iff w(t)−w(e)+w(rg (e)) > D(I), i.e., g \{e}
has only spanning trees which are too heavy to be in the solution. An edge e /∈ t is
in Forbidden(g, D(I)) iff w(t) + w(e) − w(rg(e)) > D(I). All other edges are in
Possible(g, D(I)).

3.3 Filtering the Domains of T and I

We are now ready to use the results of the analysis of g to filter the domain of T . This
entails the following steps:

1. For each edge e ∈ M andatory(g, D(I)), if e /∈ D(T) then the constraint is incon-
sistent. Otherwise, place e ∈ D(T).

2. For each edge e ∈ Forbidden(g, D(I)), remove e from D(T) (recall that we
assume that D(T) is initially empty and note that an edge cannot be both mandatory
and forbidden. So e is not in D(T)).

The second step does not invalidate the completeness of the first: By definition, a
forbidden edge is not the replacement of a non-mandatory edge. Hence, removing for-
bidden edges does not change the set M andatory(g, D(I)). As for D(I), it is filtered
by setting D(I) ← D(I) ∩ [min(T), ∞], where min(T) is the minimum weight of a
spanning tree of D(T) which contains D(T). Repeating the algorithm again will not
result in more filtering: Since D(I) did not change, the sets M andatory(g, D(I)) and
Forbidden(g, D(I)) are also unchanged.

4 WBST with Non-fixed Tree and Graph

We now consider the case in which both G and T are not fixed (but the edge weights
still are). As before, we first apply the preprocessing step described above.

4.1 Analysis of D(G)

The main complication compared to the fixed-graph case is in the analysis of the set of
graphs described by D(G) in order to filter D(T). We generalize the definition of the
sets M andatory, Possible and Forbidden:

Definition 2. For a set S of graphs, the set M andatory(S, i) contains the edges that
belong to every spanning tree of weight at most i of any connected graph in S, the set
Forbidden(S, i) contains the edges that do not belong to any spanning tree of weight
at most i of a connected graph in S and the set Possible(S, i) contains all other edges
appearing in at least one spanning tree of a connected graph in S.

The “Not-Too-Heavy Spanning Tree” Constraint 65

We will show that it suffices to analyze the upper bound of the graph domain, namely
the graph D(G). The intuition behind the following lemmas is that when an edge is re-
moved from the graph, this can only decrease the number of weight-bounded spanning
trees in the graph.

Lemma 4 (Monotony of the M andatory set). The removal of an edge from a graph
cannot turn a mandatory edge into a possible or forbidden edge. Formally: Let g be a
graph and g′ = g \ {e} the graph obtained by removing an edge e = (u, v) from g.
Then:

∀a ∈ g′ : (a ∈ M andatory(g, D(I)) ⇒

a ∈ M andatory(g′, D(I)))

Proof. Let t be an MST of g and let t′ be an MST of g′ such that if e /∈ t then t′ = t
and otherwise, t′ = (t \ {e}) ∪ {rg(e)}. Note that w(t′) ≥ w(t).

Let a be an edge in g′ ∩ M andatory(g, D(I)). By the results of Section 3.2, this
implies that a ∈ t and w(t) − w(a) + w(rg(a)) > D(I). The weight w(rg(a)) of the
replacement edge of a in g is not higher than the weight w(rg′ (a)) of its replacement
edge in g′. Hence, we can conclude that w(t′) − w(a) + w(rg′ (a)) ≥ w(t) − w(a) +
w(rg(a)) > D(I), which means that a ∈ M andatory(g′, D(I)).

Lemma 5 (Monotony of the Forbidden set). The removal of an edge from a graph
cannot turn a forbidden edge into a possible or mandatory edge. Formally: Let g be a
graph and g′ = g \ {e} the graph obtained by removing an edge e = (u, v) from g.
Then:

∀a ∈ g′ : (a ∈ Forbidden(g, D(I)) ⇒

a ∈ Forbidden(g′, D(I)))

Proof. Again, let t be an MST of g and let t′ be an MST of g′ such that if e /∈ t then
t′ = t and otherwise, t′ = (t \ {e}) ∪ {rg(e)}. Note that for every pair of nodes x, y,
the weight of the heaviest edge on the path between x and y in t is not larger than the
corresponding weight in t′.

Let a be an edge in g′ ∩ Forbidden(g, D(I)). By the results of Section 3.2, this
implies that a /∈ t and w(t) + w(a) − w(rg(a)) > D(I). If a ∈ t′, then w(t′) >
D(I) so g′ does not have any spanning tree with weight at most D(I), and all edges
are forbidden. Otherwise, we distinguish between two cases. If e /∈ t then t′ = t
and for every a /∈ t, the replacement edge is the same in g and g′, i.e., rg′ (a) =
rg(a). So w(t′) + w(a) − w(rg′ (a)) = w(t) + w(a) − w(rg(a)) > D(I) and a is in
Forbidden(g′, D(I)).

If e ∈ t, then t′ = (t \ {e}) ∪ {rg(e)} and w(t′) = w(t) − w(e) + w(rg(e)).
For every pair of nodes x, y, the weight of the heaviest edge on the path between
them in t′ is at most w(rg(e)) − w(e) larger than the corresponding weight in t, i.e.,
w(rg′ (a)) ≤ w(rg(a)) + w(rg(e)) − w(e). We get that w(t′) + w(a) − w(rg′ (a)) =
w(t) − w(e) + w(rg(e)) + w(a) − w(rg′ (a)) ≥ w(t) + w(a) − w(rg(a)) > D(I), so
a ∈ Forbidden(g′, D(I)).

66 G. Dooms and I. Katriel

Corollary 1. 1. The set Forbidden(D(G), D(I)) of edges that do not belong to
any spanning tree of weight at most D(I) of any connected graph in D(G) is
Forbidden(D(G), D(I)) = Forbidden(D(G), D(I)).

2. The set M andatory(D(G), D(I)) of edges that belong to any spanning tree of
weight at most D(I) of any connected graph in D(G) is
M andatory(D(G), D(I)) = M andatory(D(G), D(I)).

3. The set Possible(D(G), D(I)) consists of the remaining edges in D(G).

Proof. A direct consequence of Lemmas 4 and 5.

4.2 Filtering

The algorithm first computes the sets M andatory(D(G), D(I)),
Possible(D(G), D(I)) and Forbidden(D(G), D(I)). It then uses them to filter
the domains of T and I as in the case of fixed graph and tree, with a simple addition:
Whenever an edge is placed in D(T), it is also placed in D(G).

5 WBST When Only V (G) and V (T) Are Fixed

We now turn to the most general case that we are able to solve in polynomial time: The
one in which only the node-sets of G and T are fixed, but their edge-sets and the other
two variables (I and W) are not. The weight of an edge e is now represented by the
entry W [e] of W , whose domain is an interval [D(W [e]), D(W [e])]. If we view such
an edge e as an infinite set of parallel edges, one for each weight in D(W [e]), we get
a problem which is similar to the one in the previous section, on infinite graphs T and
G. There is, however, a subtle difference: If an edge is in D(T) or D(G), it means that
one of the parallel edges it generates needs to be in the respective graph, and not all of
them. Nevertheless, this does not affect the correctness of Corollary 1, which does not
refer to D(G) at all. We will sketch how our algorithm can be applied to these graphs,
which are infinite but have finite representations.

All steps that depend only on the topology of graphs (and do not involve edge
weights) are unchanged. The other steps are modified as follows. In the preprocess-
ing step, when contracting an edge e ∈ D(T), we subtract D(W [e]) from the bounds
of D(I). When filtering G, we need to compute a minimum spanning tree and then
search for the replacement edge for each MST edge. Here we need to minimize the
weight of the spanning tree for all possible values of the weights so we assume that the
weight of each edge e is D(W [e]).

In the analysis of D(G), we again find an MST t using the minimum possible weight
for each edge. When finding a replacement edge for a tree edge e, we search for the
non-tree edge e′ with minimal D(W [e′]) and proceed as before (e is mandatory iff
w(t) − D(W [e]) + D(W [e′]) > D(I)). When searching for a replacement edge for a
non-tree edge e, we select the tree edge e′ on the path between the endpoint of e with
maximal D(W [e′]). Then e is forbidden if w(t) − D(W [e]) + D(W [e′]) > D(I)).

The “Not-Too-Heavy Spanning Tree” Constraint 67

Finally, we need to consider upper bounds on the weights of the tree edges; the
weight selected for them must not be so high that the total weight of the spanning tree
is above D(I). We reverse the contraction of edges that were in D(T) in the input,
and find a minimum spanning tree t of D(G) that contains D(T). For every edge in
e ∈ D(T), we set D(W [e]) ← D(W [e]) ∩ [−∞, D(I) − w(t) + D(W [e])].

6 NP-Hardness of the Most General Case

As mentioned in the introduction, we wish to define constraints that allow efficient
filtering. Theorem 1 states that if it is NP-hard to determine whether there exists a
solution to a constraint defined on graph variables (and possibly other variables) then it
is NP-hard to filter the domains of the variables to bound consistency.

Theorem 1. Let C(G1, . . . , Gk, X1, . . .X�) be a constraint defined on graph variables
G1, . . . , Gk and scalar variables X1, . . . , X� whose domains are intervals of a totally
ordered set. If there is a polynomial-time algorithm that narrows the domains of all
variables to bound consistency then there is a polynomial-time algorithm that finds a
single solution to C.

Proof. Assume that we have an algorithm A that filters the variable domains to bound
consistency in polynomial time. Then we can find a solution to the constraint as follows:
First, use algorithm A to compute bound consistency (the constraint has a solution iff
all domains are now non-empty). Next, repeat until all variable domains are fixed or
there is a variable whose domain is empty:

1. If there is a graph variable Gi such that D(Gi) �= D(Gi), select a node v or an
edge e from D(Gi) \ D(Gi) and include it in D(Gi). Use algorithm A to compute
bound consistency.

2. If there is a scalar variable Xi with D(Xi) �= D(Xi), set D(Xi) ← D(Xi). Use
algorithm A to compute bound consistency.

In each iteration, we select a variable whose domain was not fixed and narrow it. If it
is a scalar variable Xi, we force it to be the upper endpoint of its domain (which belongs
to a solution by the assumption that the domains are bound consistent). If it is a graph
variable, we narrow its domain by excluding all graph that do not contain the selected
node or edge (again, by the assumption that the domains are bound consistent, there is
a solution in which this node or edge belongs to the graph assigned to Gi). Since the
number of iterations is upper bounded by the number of scalar variables plus the sum
of the sizes of the D(Gi)’s, the number of calls to A, and hence the running time of the
algorithm, is polynomial in the size of the input.

Now, it is NP-hard to check feasibility of WBST in its most general form:

Lemma 6. It is NP-hard to check whether a WBST constraint has a solution.

Proof. By reduction from STEINER TREE, which is the following NP-hard prob-
lem [13]: Given an undirected graph H = (V, E) with edge-weights w, a subset U ⊆ V

68 G. Dooms and I. Katriel

of the nodes and a parameter k, determine whether the graph has a subtree of weight at
most k that contains all nodes of U .

Given an instance of this problem, let D(G) = D(T) = [U, H] and D(I) = k (i.e.,
G and T must contain all nodes of U and may or may not contain the other nodes and
the edges of H). Then there is a solution to the STEINER TREE problem iff there is a
solution to the constraint WBST (G, T, I, w).

Using Theorem 1, this implies NP-hardness of filtering WBST to bound consistency
when all variables are not fixed. In conclusion, we have shown the following:

Theorem 2. Let G and T be graph variables let W be a collection of scalar variables
whose domains are intervals of rational numbers, specified by their endpoints.

If the node-sets of G and T are not fixed, it is NP-hard to filter WBST (G, T, I, W)
to bound-consistency. However, if the node-sets are fixed, there exists an algorithm that
filters the constraint to bound-consistency in O(mα(m, n)) time.

7 On Optimization Constraints

We now wish to explain our definition of the WBST constraint. In particular, the fact
that I is an upper bound on the weight of T rather than its exact weight. A Constraint
Optimization Problem (COP) is a CSP that contains an optimization criteria such as
“minimize X” or “maximize Y ”. When solving a COP, the solver is constantly looking
for solutions which are better than the best solution found so far. Filtering, then, does
not need to identify which variables belong to some solution, but rather those that belong
to an improving solution. The WBST constraint where I is an upper bound on the
weight of T is therefore an optimization constraint which is suitable for this setting:
Whenever the solver finds a solution of weight i, it sets D(i) ← min{D(I), i}. By
reducing D(I), it causes the filtering algorithm to remove more values from the domains
of the other variables. On the other hand, if the filtering algorithm discovers that the
weight of T cannot be less than i in any solution, it communicates this to the solver by
setting D(I) ← max{D(I), i}.

Now, what we wrote above explains how the WBST filtering algorithm can be used
in a branch and bound search. However, defining I to be the exact weight of T in the so-
lution would not hurt the functionality of the constraint (by setting D(I) = 0 we can al-
low any values up to D(I) as before). Would it not have been nicer to define the stronger
variant of WBST , the Exact-Weight Spanning-Tree constraint EWST (G, T, I, W),
where I is equal to the weight of T ? We show, by reduction from SUBSET-SUM,
that EWST is NP-hard to filter, even when the graph is fixed.

Lemma 7. Given a graph G = (V, E) with weights on the edges and a constant k, it
is NP-hard to determine whether G has a spanning tree of weight k.

Proof. By reduction from SUBSET-SUM, which is the following NP-hard problem [7]:
Given a set S of integers and a target k, determine whether there is a subset of S that
sums to k. We will assume that k �= 0 (SUBSET-SUM remains NP-hard under this
assumption).

The “Not-Too-Heavy Spanning Tree” Constraint 69

Given an instance (S = {x1, . . . , xn}, k) of SUBSET-SUM, we construct a graph
GS that has a spanning tree of weight k iff S has a subset that sums to k. The graph
has a node vi for every element xi ∈ S plus two additional nodes, v0 and ṽ. For each
1 ≤ i ≤ n, the graph contains the edge (ṽ, vi) with weight xi. In addition, v0 is
connected to every other node by an edge of weight 0. Clearly, for any spanning tree
of the graph, the non-zero weight edges correspond to a subset of S that sums to the
weight of the spanning tree.

Corollary 2. It is NP-hard to determine whether an EWST constraint has a solution.

Proof. If there exists a polynomial-time algorithm that determines whether an EWST
constraint has a solution, it can be used to solve SUBSET-SUM in polynomial-time as
follows: Let D(G) = [GS , GS], D(T) = [∅, GS], D(I) = {k} and w be the edge-
weights in GS . The constraint EWST (G, T, I, w) has a solution iff GS has a spanning
tree of weight k.

References

1. I. D. Aron and P. Van Hentenryck. A constraint satisfaction approach to the robust spanning
tree problem with interval data. In UAI, pages 18–25, 2002.

2. F. Azevedo. Cardinal: A finite sets constraint solver. Constraints, 12(1):to appear, 2007.
3. N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In CP-AI-OR 2005, volume 3524

of LNCS, pages 64–78. Springer-Verlag, 2005.
4. N. Beldiceanu, I. Katriel, and X. Lorca. Undirected forest constraints. In CP-AI-OR 2006,

volume 3990 of LNCS, pages 29–43. Springer-Verlag, 2006.
5. Hadrien Cambazard and Eric Bourreau. Conception d’une contrainte globale de chemin. In

10e Journ. nat. sur la rsolution pratique de problmes NP-complets (JNPC’04), pages 107–
121, 2004.

6. A. Chabrier, E. Danna, C. Le Pape, and L. Perron. Solving a network design problem. Annals
of Operations Research, 130:217–239, 2004.

7. T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press,
Cambridge, MA, USA, 1990.

8. B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM Journal on Computing, 21(6):1184–1192, 1992.

9. G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a graph computation domain
in constraint programming. In CP 2005, volume 3709 of LNCS, pages 211–225. Springer-
Verlag, 2005.

10. G. Dooms and I. Katriel. The minimum spanning tree constraint. In Frederic Benhamou,
editor, 12th International Conference on Principles and Practice of Constraint Programming
(CP 2006), volume 4204 of Lecture Notes in Computer Science, pages 152–166, Nantes,
France, 2006. Springer-Verlag.

11. D. Eppstein. Finding the k smallest spanning trees. In SWAT ’90, pages 38–47, London, UK,
1990. Springer-Verlag.

12. D. Eppstein. Setting parameters by example. SIAM J. Comput., 32(3):643–653, 2003.
13. M. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-

Completeness. Freeman, 1979.
14. C. Gervet. New structures of symbolic constraint objects: sets and graphs. In Third Workshop

on Constraint Logic Programming (WCLP’93), Marseille, 1993.

70 G. Dooms and I. Katriel

15. C. Gervet. Conjunto: Constraint propagation over set constraints with finite set domain vari-
ables. In ICLP, page 733, 1994.

16. C. Gervet. Interval propagation to reason about sets: Definition and implementation of a
practical language. Constraints, 1(3):191–244, 1997.

17. C. Gervet and P. Van Hentenryck. Length-lex ordering for set csps. In AAAI. AAAI Press,
2006.

18. M. X. Goemans. Minimum bounded degree spanning trees. In FOCS ’06: Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
273–282, 2006.

19. L. Gouveia and T. L. Magnanti. Network flow models for designing diameter-constrained
minimum-spanning and steiner trees. Networks, 41(3):159–173, 2003.

20. V. King. A simpler minimum spanning tree verification algorithm. In WADS, volume 955 of
LNCS, pages 440–448. Springer, 1995.

21. J. Könemann, A. Levin, and A. Sinha. Approximating the degree-bounded minimum diam-
eter spanning tree problem. Algorithmica, 41(2):117–129, 2004.

22. C. Lepape, L. Perron, J-C Regin, and P. Shaw. A robust and parallel solving of a network de-
sign problem. In Proceedings of the 8th International Conference on Principles and Practice
of Constraint Programming, volume LNCS 2470, pages 633–648, 2002.

23. J.-F. Puget. Pecos: a high level constraint programming language. In SPICIS’92, 1992.
24. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In AAAI-94, pages

362–367, 1994.
25. M. Sellmann. Cost-based filtering for shorter path constraints. In F. Rossi, editor, CP 2003,

volume 2833 of LNCS, pages 694–708. Springer, 2003.
26. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,

1972.
27. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225,

1975.
28. R. E. Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–715,

1979.

Eliminating Redundant Clauses in SAT Instances

Olivier Fourdrinoy, Éric Grégoire, Bertrand Mazure, and Lakhdar Saı̈s

CRIL CNRS & IRCICA
Université d’Artois

Rue Jean Souvraz SP18
F-62307 Lens Cedex France

{fourdrinoy,gregoire,mazure,sais}@cril.fr

Abstract. In this paper, we investigate to which extent the elimination of a class
of redundant clauses in SAT instances could improve the efficiency of modern
satisfiability provers. Since testing whether a SAT instance does not contain any
redundant clause is NP-complete, a logically incomplete but polynomial-time
procedure to remove redundant clauses is proposed as a pre-treatment of SAT
solvers. It relies on the use of the linear-time unit propagation technique and often
allows for significant performance improvements of the subsequent satisfiability
checking procedure for really difficult real-world instances.

1 Introduction

The SAT problem, namely the issue of checking whether a set of Boolean clauses is
satisfiable or not, is a central issue in many computer science and artificial intelligence
domains, like e.g. theorem proving, planning, non-monotonic reasoning, VLSI correct-
ness checking and knowledge-bases verification and validation. These last two decades,
many approaches have been proposed to solve hard SAT instances, based on -logically
complete or not- algorithms. Both local-search techniques (e.g. [1]) and elaborate vari-
ants of the Davis-Putnam-Loveland-Logemann’s DPLL procedure [2] (e.g. [3,4]) can
now solve many families of hard huge SAT instances from real-world applications.

Recently, several authors have focused on detecting possible hidden structural infor-
mation inside real-world SAT instances (e.g backbones [5], backdoors [6], equivalences
[7] and functional dependencies [8]), allowing to explain and improve the efficiency
of SAT solvers on large real-world hard instances. Especially, the conjunctive normal
form (CNF) encoding can conduct the structural information of the initial problem to
be hidden [8]. More generally, it appears that many real-world SAT instances contain
redundant information that can be safely removed in the sense that equivalent but easier
to solve instances could be generated.

In this paper, we investigate to which extent the elimination of a class of redundant
clauses in real-world SAT instances could improve the efficiency of modern satisfia-
bility provers. A redundant clause is a clause that can be removed from the instance
while keeping the ability to derive it from the remaining part of the instance. Since test-
ing whether a SAT instance does not contain any redundant clause is NP-complete [7],
an incomplete but polynomial-time procedure to remove redundant clauses is proposed
as a pre-treatment of SAT solvers. It relies on the use of the linear time unit propaga-
tion technique. Interestingly, we show that it often allows for significant performance

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 71–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 O. Fourdrinoy et al.

improvements of the subsequent satisfiability checking procedure for hard real-world
instances.

The rest of the paper is organized as follows. After basic logical and SAT-related
concepts are provided in Section 2, Section 3 focuses on redundancy in SAT instances,
and the concept of redundancy modulo unit propagation is developed. In Section 4,
our experimental studies are presented and analyzed. Related works are discussed in
Section 5 before conclusive remarks and prospective future research works are given in
the last Section.

2 Technical Background

Let L be a standard Boolean logical language built on a finite set of Boolean variables,
denoted x, y, etc. Formulas will be denoted using letters such as c. Sets of formulas will
be represented using Greek letters like Γ or Σ. An interpretation is a truth assignment
function that assigns values from {true, false} to every Boolean variable. A formula
is consistent or satisfiable when there is at least one interpretation that satisfies it, i.e.
that makes it become true. Such an interpretation is called a model of the instance.
An interpretation will be denoted by upper-case letters like I and will be represented
by the set of literals that it satisfies. Actually, any formula in L can be represented
(while preserving satisfiability) using a set (interpreted as a conjunction) of clauses,
where a clause is a finite disjunction of literals, where a literal is a Boolean variable
that can be negated. A clause will also be represented by the set formed with its literals.
Accordingly, the size of a clause c is given by the number of literals that it contains, and
is noted |c|.

SAT is the NP-complete problem [9] that consists in checking whether a finite set of
Boolean clauses of L is satisfiable or not, i.e. whether there exists an interpretation that
satisfies all clauses in the set or not.

Logical entailment will be noted using the � symbol: let c be a clause of L, Σ � c
iff c is true in all models of Σ. The empty clause will represent inconsistency and is
noted ⊥.

In the following, we often refer to the binary and Horn fragments of L for which
the SAT issue can be solved in polynomial time [10,11,12]. A binary clause is a clause
formed with at most two literals whereas a Horn clause is a clause containing at most
one positive literal. A unit clause is a single literal clause.

In this paper, the Unit Propagation algorithm (in short UP) plays a central role.
UP recursively simplifies a SAT instance by propagating -throughout the instance- the
truth-value of unit clauses whose variables have been already assigned, as shown in
algorithm 1.

We define entailment modulo Unit Propagation, noted �UP , the entailment relation-
ship � restricted to the Unit Propagation technique.

Definition 1. Let Σ be a SAT instance and c be a clause of L, Σ �UP c if and only if
Σ ∧ ¬c �UP ⊥ if and only if UP (Σ ∧ ¬c) contains an empty clause.

Clearly, �UP is logically incomplete. It can be checked in polynomial time since UP is
a linear-time process. Let c1 and c2 be two clauses of L. When c1 ⊆ c2, we have that

Eliminating Redundant Clauses in SAT Instances 73

Algorithm 1. Unit Propagation
Input: a SAT instance Σ
Output: an UP-irredundant SAT instance Γ equivalent to Σ w.r.t. satisfiability s.t. Γ does

not contain any unit clause
begin1

if Σ contains an empty clause then return Σ;2

else3

if Σ contains a unit clause c = {l} then4

remove all clauses containing l from Σ;5

foreach c ∈ Σ s.t. ¬l ∈ c do6

c ←− c \ {¬l}7

return Unit Propagation(Σ);8

else9

return Σ;10

end11

c1 � c2 and c1 (resp. c2) is said to subsume (resp. be subsumed by) c2 (resp. c1). A
clause c1 ∈ Σ is subsumed in Σ iff there exists c2 ∈ Σ s.t. c1 �= c2 and c2 subsumes
c1. Σ is closed under subsumption iff for all c ∈ Σ, c is not subsumed in Σ.

3 Redundancy in SAT Instances

Intuitively, a SAT instance is redundant if it contains parts that can be logically inferred
from it. Removing redundant parts of SAT instances in order to improve the satisfiability
checking process entails at least two fundamental issues.

– First, it is not clear whether removing such parts will make satisfiability checking
easier, or not. Some redundant information can actually improve the efficiency of
SAT solvers (see e.g. [13,14]). For example, it is well-known that redundancy can
help local search to escape from local minima.

– It is well-known that checking whether a SAT instance is irredundant or not is itself
NP-complete [7]. It is thus as hard as solving the SAT instance itself.

In order to address these issues, we consider an incomplete algorithm that allows
some redundant clauses to be detected and that remains polynomial. Intuitively, we
should not aim at removing all kinds of redundant clauses. Some types of clauses are
expected to facilitate the satisfiability testing since they belong to polynomial fragments
of SAT, especially the binary and the Horn ones. Accordingly, we propose an approach
that appears to be a two-levels trade-off: on the one hand, we run a redundancy detection
and removal algorithm that is both fast and incomplete. On the other hand, we investi-
gate whether it proves useful to eliminate redundant binary and Horn clauses or not.

Definition 2
Let Σ be a SAT instance and let c ∈ Σ, c is redundant in Σ if and only if Σ \ {c} � c.

74 O. Fourdrinoy et al.

Algorithm 2. Compute an UP-irredundant formula
Input: a SAT instance Σ
Output: an UP-irredundant SAT instance Γ equivalent to Σ w.r.t. satisfiability
begin1

Γ ←− Σ ;2

forall clauses c = {l1, . . . , ln} ∈ Σ sorted according to their decreasing sizes do3

if UP (Γ \ {c} ∪ {¬l1} ∪ . . . ∪ {¬ln}) contains an empty clause then4

Γ ←− Γ \ {c} ;5

return Γ ;6

end7

Clearly, redundancy can be checked using a refutation procedure. Namely, c is redun-
dant in Σ iff Σ \ {c} ∪ {¬c} �⊥. We thus strengthen this refutation procedure by
replacing � by �UP in order to get an incomplete but polynomial-time redundancy
checking approach.

Definition 3
Let Σ be a SAT instance and let c ∈ Σ, c is UP-redundant in Σ if and only if Σ \
{c} �UP c.

Accordingly, checking the UP-redundancy of c in Σ amounts to propagate the opposite
of every literal of c throughout Σ \ {c}.

Let us consider Example 1, as depicted below. In this example, it is easy to show that
w ∨ x is UP-redundant in Σ, while it is not subsumed in Σ. Let us consider Σ \ {w ∨
x}∧¬w∧¬x. Clearly, w∨¬y and x∨¬z reduce to ¬y ∧¬z, respectively. Propagating
these two literals generates a contradiction, showing that w ∨ x is UP-redundant in Σ.
On the other hand, w ∨ x is clearly not subsumed in Σ since there is no other clause
c′ ∈ Σ s.t. c′ ⊆ c.

Example 1

Σ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w ∨ x
y ∨ z
w ∨ ¬y
x ∨ ¬z
. . .

Accordingly, in Algorithm 2, a (basic) UP pre-treatment is described and can be mo-
tivated as follows. In the general case, there exists a possibly exponential number of
different sets of irredundant formulas that can be extracted from the initial instance.
Indeed, irredundancy and minimally inconsistency coincide on unsatisfiable formulas
[7]. Clearly, the specific resulting simplified instance delivered by the Algorithm 1 de-
pends on the order according to which clauses from Σ are considered. As small-size
clauses allow one to reduce the search space in a more dramatic manner than longer
ones, we have implemented a policy that checks longer clauses for redundancy, first.
Accordingly, this amounts to considering the clauses Σ according to their decreasing
sizes.

Eliminating Redundant Clauses in SAT Instances 75

Example 2. Let Σ be the following SAT instance:

Σ =

⎧
⎪⎪⎨

⎪⎪⎩

w ∨ x
w ∨ x ∨ y ∨ z
w ∨ ¬y
x ∨ ¬z

– not considering clauses according to their decreasing sizes, but starting with the
w ∨ x clause, the resulting UP-irredundant set of clauses would be the following
Σ1:

Σ1 =

⎧
⎨

⎩

w ∨ x ∨ y ∨ z
w ∨ ¬y
x ∨ ¬z

– whereas Algorithm 1, which considers w ∨x∨ y ∨ z first, delivers for this example
a different -but same size- final set Σ2 of clauses.

Σ2 =

⎧
⎨

⎩

w ∨ x
w ∨ ¬y
x ∨ ¬z

Starting with larger size clauses allows to obtain the smallest set of clauses in terms
of number of clauses and also in terms of number of literals. We are sure that all sub-
sumed clauses are removed in this way and only the subsuming clauses are preserved
because the larger ones are first tested. As this example illustrates, subsumed clauses
are removed, leading to shorter clauses in Σ2, which is thus more constrained and, to
some extent, easier to solve.

Property 1. Let Σ be a CNF formula. If Σ′ is a formula obtained from Σ by applying
Algorithm 2 then Σ′ is closed under subsumption.

Proof. Suppose that there exist two clauses c and c′ of Σ′ such that c′ subsumes c. We
can deduce that |c′| ≤ |c|. As the clauses of Σ checked for UP-redundancy are ordered
according to their decreasing sizes, we deduce that c is UP-redundant. Consequently,
c /∈ Σ′, which contradicts the hypothesis. �

The converse of Property 1 is false. Indeed, the formula Σ = Σ2 ∪ {(y ∨ e), (z ∨ ¬e)}
is closed under subsumption but is not UP-irredundant.

Clearly, in the best cases, the pre-treatment could allow us to get rid of all non-
polynomial clauses, and reduce the instance into a polynomial fragment. Since the size
of the instances can be huge, we investigate whether polynomial fragments of L should
be protected from redundancy checking or not. As a comparison study, several possi-
ble fragments have been considered for UP-redundancy checking: namely Σ, all non
Horn clauses from Σ, all non-binary clauses from Σ, and all non-Horn and non-binary
clauses from Σ.

Also, we have experimented an approach trying to maximize the number of UP trig-
gerings. The intuition is as follows. A clause that contains literals that occur in many
binary clauses will lead to a cascade of UP steps. For example, let c = x ∨ y ∨ z. When

76 O. Fourdrinoy et al.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

T
im

e
in

 s
ec

on
ds

 fo
r

so
lv

in
g

(lo
gs

ca
le

)

Time in seconds for simplifying and solving (logscale)

Fig. 1. Results for the 700 tested instances

x occurs in several binary clauses and when we check whether c is redundant using
UP, each such binary clause will be simplified into a unit clause, recursively leading
to other UP steps. Accordingly, we define a weight w associated to a clause c, noted
w(c) as the sum of the weights of each literal of c, where the weight of a literal is
given by the number of binary clauses to which it belongs. Let us note that in order
for a UP propagation step to occur when a clause c1 ∈ Σ is checked for redundancy
using UP, there must be another clause c2 ∈ Σ s.t. |c2 − {c1 ∩ c2}| = 1. Clearly, when
|c2 − {c1 ∩ c2}| = 0, c1 is UP-redundant. Since computing and recording this neces-
sary condition can be resource-consuming, we have implemented a more restrictive and
easier-to-compute criterion based on the aforementioned weights. When c2 is a binary
clause, the previous condition is satisfied if and only if c1 (to be checked for redun-
dancy) contains a literal from c2. Accordingly, when w(c) = 0, c is not checked for
redundancy. This weight-heuristic has been mixed with a policy allowing clauses from
polynomial classes (binary, Horn, binary and Horn) to be protected from redundancy
checking.

4 Experimental Results

We have experimented the aforementioned UP-based pre-treatment extensively on the
last SAT competitions benchmarks (http://www.satcompetition.org). We have
tested more than 700 SAT instances that stem from various domains (industrial, ran-
dom, hand-made, graph-coloring, etc.). Three of the winners of the last three com-
petitions, namely ZChaff, Minisat and SatElite have been selected as SAT solvers. All

Eliminating Redundant Clauses in SAT Instances 77

Table 1. Some typical instances

Instances short name #C #V
gensys-icl004.shuffled-as.sat05-3825.cnf gensys 15960 2401
rand net60-30-5.miter.shuffled.cnf rand net 10681 3000
f3-b25-s0-10.cnf f3-b25 12677 2125
ip50.shuffled-as.sat03-434.cnf ip50 214786 66131
f2clk 40.shuffled-as.sat03-424.cnf f2clk 80439 27568
f15-b3-s3-0.cnf f15-b3 469519 132555
IBM FV 2004 rule batch 23 SAT dat.k45.cnf IBM k45 381355 92106
IBM FV 2004 rule batch 22 SAT dat.k70.cnf IBM k70 327635 63923
f15-b2-s2-0.cnf f15-b2 425316 120367
IBM FV 2004 rule batch 22 SAT dat.k75.cnf IBM k75 979230 246053
okgen-c2000-v400-s553070738-553070738.cnf okgen 2000 400

experiments have been conducted on Pentium IV, 3Ghz under linux Fedora Core 4. The
complete list of our experimental data and results are available at:
http://www.cril.fr/∼fourdrinoy/eliminating redundant clauses.html

First, we have run the three SAT solvers on all benchmarks, collecting their com-
puting times to solve each instance. A time-out was set to 3 hours. Then, we have run
the UP pre-treatment on those benchmarks and collected both the simplification run-
times and the subsequent run-times spent by each of the aforementioned solvers on the
simplified instances. More precisely, we have experimented a series of different forms
of UP pre-treament. In the first one, we have applied the UP-redundancy removing
technique on all clauses. In the other ones, non-binary, non Horn clauses have been
targeted, successively. We have also targeted clauses that are neither Horn nor binary.
Finally, all those experimentations have been replayed using the additional triggering
heuristic w(c) > 0.

In Fig.1, we show the gain on all 700 tested instances. On the x-axis, we represent
the time for simplifying and solving an instance with its best policy. On the y-axis the
best time for solving the initial -not yet simplified- instance is given. Accordingly, the
line of centers represents the borderline of actual gain. Instances that are above the
line of centers benefit from the simplification policy. Clearly, this figure shows that
our technique is best employed for difficult instances requiring large amounts of CPU-
time to solve them. Indeed, for those instances we obtain significant gains most often. In
particular, all the dots horizontally aligned at 10000 seconds on the y-axis represent SAT
instances that can not be solved -by no solver- without UP-redundant simplification.

Not surprisingly, our experiments show us that applying the simplification method on
all clauses is often more time-consuming than focusing on non-polynomial clauses only
and delivers the smallest simplified instances. However, this gain in size does not lead
to a systematic run-time gain in solving the instances, including the simplification time.
Indeed, these polynomial clauses might allow an efficient resolution of these instances.

Globally, our experiments show us that the best policy consists in applying the
weight-based heuristic on all clauses.

In Tables 1 to 5, a more detailed typical sample of size-reduction of instances by the
several aforementioned methods is provided. In Table 1, we provide for each

78 O. Fourdrinoy et al.

Table 2. Simplification time and size reduction

No Restriction Horn Binary Horn& Binary
instances Ts #cr (%) Ts #cr (%) Ts #cr (%) Ts #cr(%)
gensys 1.26 2861(17.92) 1.18 2208(13.83) 1.21 2560(16.04) 1.13 2171(13.60)
rand net 1.80 608(5.69) 0.62 178(1.66) 0.62 0(0) 0.30 0(0)
f3-b25 1.66 1502(11.84) 1.04 926(7.30) 1.64 1502(11.84) 1.03 926(7.30)
ip50 65.06 1823(0.84) 22.02 504(0.23) 14.11 194(0.09) 9.10 110(0.05)
f2clk 6.39 344(0.42) 2.08 119(0.14) 1.29 77(0.09) 0.75 54(0.06)
f15-b3 359.52 55816(11.88) 116.73 14167(3.01) 55.38 1010(0.21) 37.62 640(0.13)
IBM k45 53.26 32796(8.59) 10.33 2122(0.55) 6.22 717(0.18) 5.03 715(0.18)
IBM k70 36.68 22720(6.93) 5.36 4628(1.41) 3.81 0(0) 2.78 0(0)
f15-b2 306.06 50717(11.92) 100.14 12909(3.03) 47.74 979(0.23) 34.00 609(0.14)
IBM k75 172.47 116841(11.93) 40.14 5597(0.57) 24.64 3912(0.39) 22.34 3911(0.39)
okgen 0.00 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

Weighting w(c) > 0
� �� �

No Restriction Horn Binary Horn & Binary
Ts #cr (%) Ts #cr (%) Ts #cr (%) Ts #cr(%)

gensys 0.65 2560(16.04) 0.63 2171(13.60) 0.64 2560(16.04) 0.64 2171(13.60)
rand net 1.66 514(4.81) 0.58 148(1.38) 0.62 0(0) 0.30 0(0)
f3-b25 0.21 60(0.47) 0.15 44(0.34) 0.21 60(0.47) 0.14 44(0.34)
ip50 53.95 1823(0.84) 19.43 504(0.23) 14.24 194(0.09) 9.21 110(0.05)
f2clk 6.06 267(0.33) 1.96 100(0.12) 1.30 77(0.09) 0.80 54(0.06)
f15-b3 229.84 24384(5.19) 83.46 6393(1.36) 55.69 1010(0.21) 37.72 640(0.13)
IBM k45 34.53 11049(2.89) 10.36 2122(0.55) 6.23 717(0.18) 4.98 715(0.18)
IBM k70 15.25 11464(3.49) 5.36 4616(1.40) 3.77 0(0) 2.77 0(0)
f15-b2 209.55 22217(5.22) 77.22 5709(1.34) 51.04 979(0.23) 33.32 609(0.14)
IBM k75 125.26 39640(4.04) 38.15 5597(0.57) 26.02 3912(0.39) 22.32 3911(0.39)
okgen 0 0(0) 0.00 0(0) 0.00 0(0) 0.00 0(0)

instance its numbers of clauses (#C) and variables (#V) and a short name to facil-
itate the presentation of results. In Table 2, the CPU time in seconds (Ts) needed to
simplify the instance is given, together with the obtained size reduction, expressed in
number of clauses (#cr) and expressed in percents. In the second column results are
given for a policy that considers all clauses for simplification. In the next ones Horn,
Bin, Horn&Bin represent the classes that are protected from simplification. The last
columns provide the results for the same policies augmented with the weight heuristics.

In Tables 3 to 5, satisfiability checking run-times are provided for the same instances,
using Zchaff, Minisat and SatElite, respectively. TO means “time-out”. In the first col-
umn, Tb is the CPU-time to solve the initial instance. In the subsequent columns, the
CPU-time to solve the simplified instance (Tr) is given together with the efficiency
gains with respect to satisfiability checking: %p and %g being the gains without and
with taking the simplification run-time into account. The symbol ∞ (resp. −∞) repre-
sents the gain when the pre-processor-less (resp. pre-processor-based) approach fails to
deliver a result while the pre-processor-based (resp. pre-processor-less) succeeds. When
both approaches fail, the gain is represented by –.

5 Related Work

Introducing a fast -polynomial time- pre-processing step inside logically complete SAT
solvers is not a new idea by itself. Mainly, C-SAT [15] was provided with a pre-processor
that made use a form of bounded resolution procedure computing all resolvents whose

Eliminating Redundant Clauses in SAT Instances 79

Table 3. Zchaff results

No Restriction Horn Binary Horn & Binary
instances Tb Tr (%p,%g) Tr (%p,%g) Tr (%p,%g) Tr(%p,%g)
gensys (3418.17) 2847.1(16.70,16.66) 3353.69(1.88,1.85) 1988.37(41.82,41.79) 3683.58(-7.76,-7.79)
rand net (1334.19) 942.15(29.38,29.24) 1067.01(20.02,19.97) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 137.26(82.64,82.43) 155.32(80.36,80.23) 134.91(82.94,82.73) 157.44(80.09,79.96)
ip50 (2571.18) 675.11(73.74,71.21) 474.64(81.53,80.68) 1023.82(60.18,59.63) 1945.87(24.31,23.96)
f2clk (6447.19) 4542.32(29.54,29.44) 9457.25(-46.68,-46.72) 3978.14(38.29,38.27) 3848.02(40.31,40.30)
f15-b3 (7627.95) 5620.25(26.32,21.60) 2926.38(61.63,60.10) 10157.9(-33.16,-33.89) 2419.52(68.28,67.78)
IBM k45 (5962.46) 2833.1(52.48,51.59) 3656.05(38.68,38.50) 3244.61(45.58,45.47) 4751.79(20.30,20.22)
IBM k70 (TO) 514.83(∞,∞) 5377.91(∞,∞) TO(–,–) TO(–,–)
f15-b2 (TO) 2287.73(∞,∞) 8891.1(∞,∞) TO(–,–) 3969.27(∞,∞)
IBM k75 (TO) TO(–,–) TO(–,–) TO(–,–) TO(–,–)
okgen (1309.66) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Weighting w(c) > 0
� �� �

No Restriction Horn Binary Horn & Binary
Tr (%p,%g) Tr (%p,%g) Tr (%p,%g) Tr(%p,%g)

gensys (3418.17) 1986.98(41.87,41.85) 3896.93(-14.00,-14.02) 1967.22(42.44,42.42) 3873.89(-13.33,-13.35)
rand net (1334.19) 555.13(58.39,58.26) 614.75(53.92,53.87) 1334.19(0,-0.04) 1334.19(0,-0.02)
f3-b25 (790.96) 839.54(-6.14,-6.16) 811.37(-2.58,-2.59) 791.97(-0.12,-0.15) 813.05(-2.79,-2.81)
ip50 (2571.18) 708.81(72.43,70.33) 465.13(81.90,81.15) 1091.54(57.54,56.99) 1958(23.84,23.48)
f2clk (6447.19) 5196.02(19.40,19.31) 5766.78(10.55,10.52) 4042.8(37.29,37.27) 3965.68(38.48,38.47)
15-b3 (7627.95) TO(−∞,−∞) TO(−∞,−∞) 10024(-31.41,-32.14) 2448.27(67.90,67.40)
IBM k45 (5962.46) 4447.15(25.41,24.83) 3698.1(37.97,37.80) 3283.2(44.93,44.83) 4925.58(17.39,17.30)
IBM k70 (TO) 4131.58(∞,∞) 5564.5(∞,∞) TO(–,–) TO(–,–)
f15-b2 (TO) 4456.24(∞,∞) 2880.15(∞,∞) TO(–,–) 4028.04(∞,∞)
IBM k75 (TO) TO(–,–) TO(–,–) TO(–,–) TO(–,–)
okgen (1309.66) 1309.66(0,0) 1309.66(0,-0.00) 1309.66(0,-0.00) 1309.66(0,-0.00)

Table 4. Minisat results

No Restriction Horn Binary Horn & Binary
instances Tb Tr(%p,%g) Tr (%p,%g) Tr(%p,%g) Tr (%p,%g)
gensys (7543.42) 4357.66(42.23,42.21) 7078.84(6.15,6.14) 4722.35(37.39,37.38) 7370.48(2.29,2.27)
rand net (41.15) 11.00(73.26,68.87) 35.12(14.66,13.14) 41.15(0,-1.52) 41.15(0,-0.73)
f3-b25 (755.90) 225.45(70.17,69.95) 246.97(67.32,67.18) 233.73(69.07,68.86) 243.39(67.80,67.66)
ip50 (88.43) 61.95(29.94,-43.62) 138.90(-57.06,-81.97) 64.47(27.09,11.13) 60.13(31.99,21.70)
f2clk (280.88) 290.41(-3.39,-5.66) 188.53(32.87,32.13) 325.87(-16.01,-16.48) 274.77(2.17,1.90)
15-b3 (875.37) 531.31(39.30,-1.76) 561.40(35.86,22.53) 759.43(13.24,6.91) 555.47(36.54,32.24)
IBM k45 (3940.82) 3729.01(5.37,4.02) 3568.43(9.44,9.18) 3625.13(8.01,7.85) 3541.57(10.13,10.00)
IBM k70 (643.67) 76.16(88.16,82.46) 527.58(18.03,17.20) 643.67(0,-0.59) 643.67(0,-0.43)
f15-b2 (516.36) 334.07(35.30,-23.96) 257.93(50.04,30.65) 452.94(12.28,3.03) 369.69(28.40,21.81)
IBM k75 (4035.72) 5096.73(-26.29,-30.56) 6324.08(-56.70,-57.69) 5782.49(-43.28,-43.89) 5534.54(-37.13,-37.69)
okgen (46.43) 46.43(0,-0.02) 46.43(0,-0.01) 46.43(0,-0.01) 46.43(0,-0.01)

Weighting w(c) > 0
� �� �

No Restriction Horn Binary Horn & Binary
Tr(%p,%g) Tr (%p,%g) Tr(%p,%g) Tr (%p,%g)

gensys (7543.42) 4742.55(37.12,37.12) 7434.11(1.44,1.44) 4615.46(38.81,38.80) 7610.16(-0.88,-0.89)
rand net (41.15) 27.00(34.38,30.33) 25.60(37.79,36.36) 41.15(0,-1.52) 41.15(0,-0.73)
f3-b25 (755.90) 745.80(1.33,1.30) 738.83(2.25,2.23) 773.19(-2.28,-2.31) 779.37(-3.10,-3.12)
ip50 (88.43) 54.28(38.61,-22.39) 138.28(-56.35,-78.33) 67.17(24.04,7.93) 52.71(40.39,29.97)
f2clk (280.88) 224.82(19.95,17.79) 221.20(21.24,20.54) 299.23(-6.53,-6.99) 289.93(-3.22,-3.50)
15-b3 (875.37) 543.86(37.87,11.61) 687.06(21.51,11.97) 751.79(14.11,7.75) 498.80(43.01,38.70)
IBM k45 (3940.82) 1826.6(53.64,52.77) 3324.82(15.63,15.36) 3637.35(7.70,7.54) 3714.29(5.74,5.62)
IBM k70 (643.67) 31.51(95.10,92.73) 518.48(19.44,18.61) 643.67(0,-0.58) 643.67(0,-0.43)
f15-b2 (516.36) 378.88(26.62,-13.95) 155.70(69.84,54.89) 483.39(6.38,-3.49) 371.51(28.05,21.59)
IBM k75 (4035.72) 4202.16(-4.12,-7.22) 5782.1(-43.27,-44.21) 5927.94(-46.88,-47.53) 5655.36(-40.13,-40.68)
okgen (46.43) 46.43(0,0) 46.43(0,-0.00) 46.43(0,-0.00) 46.43(0,-0.00)

80 O. Fourdrinoy et al.

Table 5. SatElite results

No Restriction Horn Binary Horn & Binary
instances Tb Tr(%p,%g) Tr (%p,%g) Tr(%p,%g) Tr (%p,%g)
gensys (5181.22) 4672.43(9.81,9.79) 7879.9(-52.08,-52.10) 5146.42(0.67,0.64) 7964.11(-53.71,-53.73)
rand net (131.01) 173.97(-32.79,-34.16) 110.02(16.01,15.54) 131.01(0,-0.48) 131.01(0,-0.23)
f3-b25 (1664.94) 2935.61(-76.31,-76.41) 1926.54(-15.71,-15.77) 2934.61(-76.25,-76.35) 1924.24(-15.57,-15.63)
ip50 (79.45) 110.37(-38.91,-120.79) 143.30(-80.36,-108.08) 150.33(-89.20,-106.97) 58.31(26.60,15.15)
f2clk (323.15) 270.61(16.25,14.28) 291.93(9.66,9.01) 453.03(-40.19,-40.59) 518.12(-60.33,-60.56)
15-b3 (833.17) 244.23(70.68,27.53) 976.24(-17.17,-31.18) 281.31(66.23,59.58) 760.59(8.71,4.19)
IBM k45 (7829.02) 4111.24(47.48,46.80) 4382.78(44.01,43.88) 3457.46(55.83,55.75) 3314.55(57.66,57.59)
IBM k70 (712.10) 225.22(68.37,63.22) 757.96(-6.43,-7.19) 712.10(0,-0.53) 712.10(0,-0.39)
f15-b2 (794.85) 261.70(67.07,28.56) 575.30(27.62,15.02) 556.98(29.92,23.91) 441.52(44.45,40.17)
IBM k75 (2877.51) 3714.45(-29.08,-35.07) 4099.39(-42.46,-43.85) 5505.93(-91.34,-92.20) 3796.42(-31.93,-32.71)
okgen (323.06) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

Weighting w(c) > 0
� �� �

No Restriction Horn Binary Horn & Binary
Tr(%p,%g) Tr (%p,%g) Tr(%p,%g) Tr (%p,%g)

gensys (5181.22) 5052.73(2.47,2.46) 8046.2(-55.29,-55.30) 5163.37(0.34,0.33) 8231.05(-58.86,-58.87)
rand net (131.01) 63.00(51.91,50.63) 130.23(0.59,0.14) 131.01(0,-0.47) 131.01(0,-0.23)
f3-b25 (1664.94) 1701.57(-2.20,-2.21) 1698.4(-2.00,-2.01) 1745.22(-4.82,-4.83) 1723.25(-3.50,-3.51)
ip50 (79.45) 113.38(-42.70,-110.61) 136.52(-71.82,-96.28) 146.68(-84.61,-102.54) 60.46(23.90,12.30)
f2clk (323.15) 313.56(2.96,1.09) 238.38(26.23,25.62) 466.84(-44.46,-44.86) 503.75(-55.88,-56.13)
15-b3 (833.17) 675.88(18.87,-8.70) 1276.87(-53.25,-63.27) 271.53(67.40,60.72) 733.52(11.96,7.43)
IBM k45 (7829.02) 5836.14(25.45,25.01) 4364.69(44.24,44.11) 3341(57.32,57.24) 3311.19(57.70,57.64)
IBM k70 (712.10) 406.32(42.94,40.79) 740.12(-3.93,-4.68) 712.10(0,-0.53) 712.10(0,-0.38)
f15-b2 (794.85) 316.32(60.20,33.83) 293.82(63.03,53.31) 549.23(30.90,24.47) 469.28(40.95,36.76)
IBM k75 (2877.51) 3121.35(-8.47,-12.82) 4017.92(-39.63,-40.95) 5170.69(-79.69,-80.59) 3738.34(-29.91,-30.69)
okgen (323.06) 323.06(0,0) 323.06(0,-0.00) 323.06(0,-0.00) 323.06(0,-0.00)

size are smaller than the size of their parents. At that time C-SAT was the most pow-
erful solver to solve random k-SAT instances. Satz uses the same technique, but with
a resolvent size limited to three [16]. Recently, Niklas Eén and Armin Biere have in-
troduced a variable elimination technique with subsumption, self-subsuming resolution
and variable elimination by substitution [17] as a pre-processing step for modern SAT
solvers, extending a previous pre-processor NiVER by [18]. Another polynomial-time
preprocessor has been introduced by James Crawford and is available in [19]. In [20],
an algorithm is described that maintains a subsumption-free CNF clauses database by
efficiently detecting and removing subsumption as the clauses are being added. An in-
teresting path for future research would consist in comparing our approach with those
other pre-processors from both theoretical and experimental points of view.

Due to its linear-time character, the unit propagation algorithm has been exploited in
several ways in the context of SAT, in addition to being a key component of DPLL-like
procedures. For example, C-SAT and Satz used a local treatment during important steps
of the exploration of the search space, based on UP, to derive implied literals and detect
local inconsistencies, and guide the selection of the next variable to be assigned [15,16].
In [21], a double UP schema is explored in the context of SAT solving. In [22,8], UP
has been used as an efficient tool to detect functional dependencies in SAT instances.
The UP technique has also been exploited in [23] in order to derive subclauses by using
the UP implication graph of the SAT instance, and speed up the resolution process.

Bailleux, Roussel and Boufkhad have studied how clauses redundancy affects the
resolution of random k-sat instances [24]. However, their study is specific to random

Eliminating Redundant Clauses in SAT Instances 81

instances and cannot be exported to real-world ones. Moreover, they have explored
redundancy and not UP-redundancy; their objective being to measure the redundancy
degree of random 3-SAT instances at the crossover point. From a complexity point of
view, a full study of redundancy in the Boolean framework is given in [25].

To some extent, our approach is also close to compilation techniques [26,27,28,29]
where the goal is to transform the Boolean instances into equivalent albeit easier ones to
check or to infer from. The idea is to allow much time to be spent in the pre-processing
step, transforming the instance into a polynomial-size new instance made of clauses
belonging polynomial-time fragments of L, only. Likewise, our approach aims to re-
duce the size of the non-polynomial fragments of the instances. However, it is a partial
reduction since all clauses belonging to non-polynomial fragments are not necessary
removed. Moreover, whereas compilation techniques allow a possibly exponential time
to be spent in the pre-processing step, we make sure that our pre-processing technique
remains a polynomial-time one.

6 Conclusions

Eliminating redundant clauses in SAT instances during a pre-treatment step in order
to speed up the subsequent satisfiability checking process is a delicate matter. Indeed,
redundancy checking is intractable in the worst case, and some redundant information
can actually help to solve the SAT instances more efficiently. In this paper, we have
thus proposed and experimented a two-levels trade-off. We rely on the efficiency al-
beit incomplete character of the unit propagation algorithm to get a fast pre-treatment
that allows some -but not all- redundant clauses to be detected. We have shown from
an experimental point of view the efficiency of a powerful weight-based heuristics for
redundancy extraction under unit propagation. Such a pre-treatment can be envisioned
as a compilation process that allows subsequent faster operations on the instances. In-
terestingly enough, the combined computing time spent by such a pre-treatment and
the subsequent SAT checking often outperforms the SAT checking time for the initial
instance on very difficult instances.

This piece of research opens other interesting perspectives. For example, such a pre-
processing step can play a useful role in the computation of minimally inconsistent
subformulas (MUSes) [30]. Also, we have focused on binary and Horn fragments as
polynomial fragments. Considering other fragments like e.g. the reverse Horn and re-
namable Horn could be a fruitful path for future research.

Acknowledgments

This research has been supported in part by the EC under a Feder grant and by the
Région Nord/Pas-de-Calais.

References

1. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiabil-
ity problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI’92). (1992) 440–446

82 O. Fourdrinoy et al.

2. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM 5(7) (1962) 394–397

3. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC’01).
(2001) 530–535

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT’03). (2003) 502–518

5. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT
formulae. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI’01). (2001) 248–253

6. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03). (2003)
1173–1178

7. Liberatore, P.: The complexity of checking redundancy of CNF propositional formulae. In:
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI’02). (2002)
262–266

8. Grégoire, É., Ostrowski, R., Mazure, B., Saı̈s, L.: Automatic extraction of functional depen-
dencies. In: Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing (SAT’04). (2004) 122–132

9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd An-
nual ACM Symposium on Theory of Computing, New York (USA), Association for Com-
puting Machinery (1971) 151–158

10. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1 (1972)
146–160

11. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow
problems. SIAM J. Comput. 5 (1976) 691–703

12. Dowling, W.H., Gallier, J.H.: Linear-time algorithms for testing satisfiability of propositional
horn formulae. Journal of Logic Programming 1(3) (1984) 267–284

13. Wei, W., Selman, B.: Accelerating random walks. In: Proceedings of 8th International
Conference on the Principles and Practices of Constraint Programming (CP’2002). (2002)
216–232

14. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and
filtering in structured satisfiable problems. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI’01). (2001) 351–358

15. Dubois, O., André, P., Boufkhad, Y., Carlier, Y.: SAT vs. UNSAT. In: Second DIMACS
implementation challenge: cliques, coloring and satisfiability. Volume 26 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society
(1996) 415–436

16. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97).
(1997) 366–371

17. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Proceedings of the 8th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT’05). (2005) 61–75

18. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing (SAT’04). (2004) 276–291

19. Crawford, J.: A polynomial-time preprocessor (”compact”) (1996)
http://www.cirl.uoregon.edu/crawford/.

20. Zhang, W.: Configuration landscape analysis and backbone guided local search: Part i: Sat-
isfiability and maximum satisfiability. Artificial Intelligence 158(1) (2004) 1–26

Eliminating Redundant Clauses in SAT Instances 83

21. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proceedings of the
Workshop on Theory and Applications of Satisfiability Testing (SAT’01), Boston University,
Massachusetts, USA (2001)

22. Ostrowski, R., Mazure, B., Saı̈s, L., Grégoire, É.: Eliminating redundancies in SAT search
trees. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’2003), Sacramento (2003) 100–104

23. Darras, S., Dequen, G., Devendeville, L., Mazure, B., Ostrowski, R., Saı̈s, L.: Using Boolean
constraint propagation for sub-clauses deduction. In: Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming (CP’05). (2005) 757–761

24. Boufkhad, Y., Roussel, O.: Redundancy in random SAT formulas. In: Proceedings of the
17th National Conference on Artificial Intelligence (AAAI’00). (2000) 273–278

25. Liberatore, P.: Redundancy in logic i: CNF propositional formulae. Artificial Intelligence
163(2) (2005) 203–232

26. Selman, B., Kautz, H.A.: Knowledge compilation using horn approximations. In: Proceed-
ings of the 9th National Conference on Artificial Intelligence (AAAI’91). (1991) 904–909

27. del Val, A.: Tractable databases: How to make propositional unit resolution complete through
compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning (KR’94). (1994) 551–561

28. Marquis, P.: Knowledge compilation using theory prime implicates. In: Proceedings of the
14th International Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, Canada
(1995) 837–843

29. Mazure, B., Marquis, P.: Theory reasoning within implicant cover compilations. In: Proceed-
ings of the ECAI’96 Workshop on Advances in Propositional Deduction, Budapest, Hungary
(1996) 65–69

30. Grégoire, É., Mazure, B., Piette, C.: Extracting MUSes. In: Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI’06), Trento, Italy (2006) 387–391

Cost-Bounded Binary Decision Diagrams for

0-1 Programming

Tarik Hadžić1 and J.N. Hooker2

1 IT University of Copenhagen
tarik@itu.dk

2 Carnegie Mellon University
john@hooker.tepper.cmu.edu

Abstract. In recent work binary decision diagrams (BDDs) were intro-
duced as a technique for postoptimality analysis for integer program-
ming. In this paper we show that much smaller BDDs can be used for
the same analysis by employing cost bounding techniques in their con-
struction.

Binary decision diagrams (BDDs) have seen widespread application in logic cir-
cuit design and product configuration. They also have potential application to
optimization, particularly to postoptimality analysis. A BDD can represent, of-
ten in compact form, the entire feasible set of an optimization problem. Optimal
solutions correspond to shortest paths in the BDD. Due to the efficiency of
this representation, one can rapidly extract a good deal of information about a
problem and its solutions by querying the BDD.

This opens the door to fast, in-depth postoptimality analysis without having
to re-solve the problem repeatedly—provided the BDD is of manageable size.
For instance, one can identify all optimal or near-optimal solutions by finding
all shortest or near-shortest paths in the BDD. One can quickly determine how
much freedom there is to alter the solution without much increase in cost. This is
particularly important in practice, since managers often require some flexibility
in how they implement a solution. One can deduce, in real time, the conse-
quences of fixing a variable to a particular value. One can conduct several types
of sensitivity analysis to measure the effect of changing the problem data.

We present in [1] several techniques for postoptimality analysis using BDDs.
We address here a key computational issue: how large does the BDD grow as
the problem size increases, and how can one minimize this growth? In particular
we examine the strategy of generating a BDD that represents only near-optimal
solutions, since these are generally the solutions of greatest interest in practice.
In principle, a BDD that exactly represents the set of near-optimal solutions
need be no smaller than one that represents all solutions, and it can in fact
be exponentially larger. At least in the problem domain we investigate, how-
ever, the BDD representing near-optimal solutions is significantly smaller. We
also identify a family of sound BDDs that are even smaller but support valid
postoptimality analysis—even though they do not exactly represent the set of

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 84–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 85

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

Fig. 1. Branching tree for 2x0 + 3x1 + 5x2 + 5x3 ≥ 7

near-optimal solutions. This allows for postoptimality analysis of much larger
problem instances by using sound BDDs.

One advantage of BDD-based analysis is that it presupposes no structure in
the problem, aside from separability of the objective function and finiteness of
domains. The methods are the same regardless of whether the constraint and
objective functions are linear, nonlinear, convex, or nonconvex. However, for
purposes of experimentation we focus on 0-1 linear programming problems. The
methods described here are readily extended to nonlinear constraints. They can
also be extended to general integer variables by writing each variable as a vector
of 0-1 variables.

1 Binary Decision Diagrams

A BDD is a directed graph that represents a boolean function. A given boolean
function corresponds to a unique reduced BDD when the variable ordering is
fixed. The same is true of a constraint set in 0-1 variables, since it can be viewed
as a boolean function that is true when the constraints are satisfied and false
otherwise.

The reduced BDD is essentially a compact representation of the branching
tree for the constraint set. The leaf nodes of the tree are labelled by 1 or 0 to
indicate that the constraint set is satisfied or violated. For example, the tree of
Fig. 1 represents the 0-1 linear inequality

2x0 + 3x1 + 5x2 + 5x3 ≥ 7 . (1)

The solid branches (high edges) correspond to setting xj = 1 and the dashed
branches (low edges) to setting xj = 0.

The tree can be transformed to a reduced BDD by repeated application of
two operations: (a) if both branches from a node lead to the same subtree, delete
the node; (b) if two subtrees are identical, superimpose them. The reduced BDD
for (1) appears in Fig. 2(a).

86 T. Hadžić and J.N. Hooker

−1

0

0−3

4

0 4

0

6 0

(a) (b)

Fig. 2. (a) Reduced BDD for 2x0 + 3x1 + 5x2 + 5x3 ≥ 7 using the variable ordering
x0, x1, x2, x3. (b) Same BDD with edge lengths corresponding to the objective function
2x0 − 3x1 + 4x2 + 6x3.

Each path from the root to 1 in a BDD represents one or more solutions,
namely all solutions in which xj is set to 0 when the path contains a low edge
from a node labelled xj , and is set to 1 when the path contains a high edge
from such a node. A BDD B represents the set Sol(B) of all solutions that are
represented by a path from the root to 1.

A reduced BDD can in principle be built by constructing the search tree
and using intelligent caching to eliminate nodes and superimpose isomorphic
subtrees. It is more efficient in practice, however, to combine the BDDs for
elementary components of the boolean function. For example, if there are several
constraints, one can build a BDD for each constraint and then conjoin the BDDs.
Two BDDs can be conjoined in time that is roughly quadratic in the number
of BDD nodes. Thus if the individual constraints have compact BDDs, this
structure is exploited by constructing search trees for the individual constraints
and conjoining the resulting BDDs, rather than constructing a search tree for
the entire constraint set. Algorithms for building reduced BDDs in this fashion
are presented in [2,1].

The BDD for a linear 0-1 inequality can be surprisingly compact. For instance,
the 0-1 inequality

300x0 + 300x1 + 285x2 + 285x3 + 265x4 + 265x5 + 230x6+
23x7 + 190x8 + 200x9 + 400x10 + 200x11 + 400x12+
200x13 + 400x14 + 200x15 + 400x16 + 200x17 + 400x18 ≥ 2701

(2)

has a complex feasible set that contains 117,520 minimally feasible solutions
(each of which becomes infeasible if any variable is flipped from 1 to 0), as
reported in [3]. (Equivalently, if the right-hand side is ≤ 2700, the inequality has
117,520 minimal covers.) The BDD for (2) contains only 152 nodes.

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 87

A separable objective function
∑

j cj(xj) can be minimized subject to a con-
straint set by finding a shortest path from the root to 1 in the corresponding
BDD. If node u and u′ have labels xk and x�, respectively, then a high edge
from u to u′ has length c1[u, u′] = ck(1) + c∗k+1,�−1, where c∗k+1,�−1 is the cost
of setting every skipped variable xk+1, . . . , xl−1 to a value that gives the lowest
cost. More precisely:

cv[u, u′] = ck(v) + c∗k+1,�−1

and

c∗pq =
q∑

j=p

min{cj(1), cj(0)}

A low edge from u to u′ has length c0[u, u′]. For example, if we minimize

2x0 − 3x1 + 4x2 + 6x3 (3)

subject to (1), the associated BDD has the edge lengths shown in Fig. 2(b). Note
that the length of the high edge from the root node is c0(1) + c∗11 = 2 − 3 = −1.
The shortest path from the root node to 1 has length 1 and passes through the
x1 node and the x2 node on the left. Its three edges indicate that (x0, x1, x2) =
(0, 1, 1). This corresponds to optimal solution (x0, x1, x2, x3) = (0, 1, 1, 0), where
x3 is set to zero to minimize the x3 term in the objective function.

2 Previous Work

BDDs have been studied for decades [4,5]. Bryant [6] showed how to reduce
a BDD to a unique canonical form, for a given variable ordering. Readable
introductions to BDDs include [2,7].

There has been very little research into the application of BDDs to opti-
mization. Becker at al. [8] used BDDs to identify separating cuts for 0-1 linear
programming problems in a branch-and-cut context. They generated BDDs for
a subset of constraints and obtained a cut ux ≥ u0 that is violated by the so-
lution x̄ of the linear relaxation of the problem. The cut is obtained by using
subgradient optimization to find an assignment of costs ui to edges of the BDD
for which ux < u0, where u0 is the length of a shortest path to 1 in the BDD.

In [1] we show how BDDs can be used for various types of postoptimality
analysis. One type is cost-based domain analysis, which computes the projec-
tion of the set of near-optimal solutions onto any given variable. Near-optimal
solutions are those whose objective function value is within Δ of the optimal
value, where Δ is specified by the user. This type of analysis shows the extent
to which the values of variables can be changed without increasing cost more
than Δ. We also show how to perform conditional domain analysis, which com-
putes the projections after restricting the domain of one or more variables. This
shows the consequences of making certain decisions on possible values for the
remaining variables. We illustrate these techniques on capital budgeting, net-
work reliability, and investment problems, the last two of which are nonlinear
and nonconvex, and all of which involve general integer variables.

88 T. Hadžić and J.N. Hooker

3 Projection and Postoptimality Analysis

Consider a 0-1 programming problem with a separable objective function:

min
n∑

j=1

cj(xj)

gi(x) ≥ bi, i = 1, . . . , m

xj ∈ {0, 1}, j = 1, . . . , n

(4)

We refer to any 0-1 n-tuple as a solution of (4), any solution that satisfies the
constraints as a feasible solution. If Sol is the set of feasible solutions, let Solj
be the projection of Sol onto variable xj . Then Solj can be easily deduced from
the reduced BDD B of (4). Solj contains the value 0 if at least one path from
the root to 1 in B contains a low edge from a node labelled xj , and it contains
1 if at least one path contains a high edge from a node labelled xj .

If c∗ is the optimal value of (4), then for a given tolerance Δ the set of near-
optimal feasible solutions of (4) is

SolΔ =
{

x ∈ Sol
∣∣∣
∑

cj(xj) ≤ c∗ + Δ
}

In general, cost-based domain analysis derives the projection SolΔj of SolΔ
onto any xj for any Δ between 0 and some maximum tolerance Δmax. It may also
incorporate conditional domain analysis subject to a partial assignment xJ = vJ

specified by the user, where J ⊂ {1, . . . , n}. This projection is

SolΔj(xJ = vJ) = {xj | x ∈ SolΔ, xJ = vJ}

Algorithms for implementing cost-based domain analysis are presented in [1],
and they are based on compiling the solution set of (4) into a BDD B. SolΔj

can be efficiently computed by examining paths of length at most c∗ + Δ from
the root to 1 in B. SolΔj contains 0 if at least one such path contains a low
edge from a node labelled xj , and it contains 1 if at least one such path contains
a high edge from a node labelled xj [9]. Similar analysis for SolΔj(xJ = vJ) is
performed on a restricted BDD that can be efficiently constructed from B.

It is obvious that domain-analysis is correct if B represents exactly the solu-
tion set Sol. However, the main computational issue is obtaining a BDD B of
manageable size. It is therefore useful to find smaller BDDs that do not neces-
sarily represent Sol but still yield the same outputs SolΔj . We will say that any
BDD B′ over which the algorithms from [1] compute the required SolΔj yields
correct cost-based domain analysis.

4 Cost-Bounded BDDs

To obtain correct cost-based domain analysis from a smaller BDD, a straight-
forward strategy is to use a BDD that represents only near-optimal solutions.

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 89

A BDD that represents all solutions is not necessary, since SolΔj contains pro-
jections of near-optimal solutions only. Thus if B represents the solution set of
(4), we denote by Bcx≤b the BDD representing the set of near-optimal solutions,
where b = c∗ + Δmax. Bcx≤b can be built by adding cx ≤ b to the constraint set
of (4) and constructing a BDD in the usual fashion. We will refer to this exact
representation of near-optimal solution set as an exact BDD.

Although Sol(Bcx≤b) is smaller than Sol(B), Bcx≤b is not necessarily smaller
than B. In fact, it can be exponentially larger. For example, consider a 0-1
programming model (4) over n = p2 variables {xkl | k, l = 1, . . . , p}. Let there
be no constraints, i.e., the solution set contains all 0-1 tuples, so that resulting
BDD B is a single 1 node (a tautology). Let the objective function of (4) be

p∑

k=1

p∑

�=1

ck�xk�

where ck� = 2k−1 + 2�+p−1, so that c∗ = 0. If we let

b̄ = 1
2

p∑

k=1

p∑

�=1

ck� = 1
2p(22p − 1)

then Theorem 6 from [10] states that a BDD B1 representing function cx ≥ b̄ has
the width of at least Ω(2

√
n/2) and is therefore exponentially large. A BDD B2

representing cx ≤ b̄ − 1 is a negation of B1, obtained by just swapping terminal
nodes 0 and 1, and has the same width Ω(2

√
n/2). Therefore, if we take b = b̄−1,

Bcx≤b is exponentially larger than B.
On the other hand, exact BDD can also be exponentially smaller than B.

For example, if the objective function is
∑

k� xk� and the constraint set consists
of

∑
k� ck�xk� ≤ b̄ − 1, then c∗ = 0 and B has the width Ω(2

√
n/2). However,

Sol(Bcx≤b) contains one solution when b = c∗ = 0, namely x = 0, and Bcx≤b

therefore has a linear number of nodes.

5 Sound BDDs

As part of a strategy for overcoming the possible size explosion of an exact BDD,
we suggest a family of sound BDDs to be used for cost-based domain analysis.
A sound BDD for a given Δmax is any BDD B′ for which

Sol(B′) ∩ {x ∈ {0, 1}n | cx ≤ b} = Sol(Bcx≤b) (5)

where again b = c∗ + Δmax. Clearly,

Lemma 1. Any sound BDD yields correct cost-based domain analysis.

This is because if B′ is sound, the elements of B′ with cost at most b are precisely
the elements of Sol(B) with cost at most b. Thus when B′ is used to compute
SolΔj , the result is the same as when using Bcx≤b or B. Note that Sol(B′) need

90 T. Hadžić and J.N. Hooker

not be a subset of Sol(B). We can add or remove from Sol(B′) any element with
cost greater than b without violating soundness.

A smallest sound BDD is no larger than either B or Bcx≤b (as both are sound
themselves), and it may be significantly smaller than both.

We are unaware of a polynomial-time exact algorithm for computing a smallest
sound BDD, but we offer a heuristic method that uses two polynomial-time
operations, pruning and contraction, each of which reduces the size of a BDD
while preserving soundness.

6 Pruning

Pruning a BDD removes edges that belong only to paths that are longer than the
cost bound b. Pruning therefore reduces the size of the BDD without removing
any solutions with cost less than or equal to b.

Define a path from the root to 1 to be admissible with respect to b if it
represents at least one solution x with cx ≤ b. An edge in the BDD is admissible
if it lies in at least one admissible path. Pruning is the operation of removing an
inadmissible edge. A BDD is pruned if it contains no inadmissible edges.

Pruning clearly preserves soundness, but some pruned and sound BDDs for
the same constraint set may be smaller than others. Consider BDDs in Fig. 3
defined over two variables x1 and x2 and the objective function x1 + x2. Then if
b = 1, both BDDs in Fig. 3 are pruned and sound.

Fig. 4 displays an algorithm that generates a pruned BDD, given a starting
BDD B and a cost bound cx ≤ b as input. In the algorithm, L[j] is the set of
nodes of B with label xj . Pruning starts with the last layer of nodes L[n − 1]
and proceeds to first layer L[0]. Each round of pruning creates a new B, which
is stored as Bold before the next round starts. For a given node u, l(u) and h(u)
are its low and high children, respectively, in Bold. If node u has label xj , the
algorithm checks whether the low edge (u, l(u)) is too expensive by checking
whether the shortest path from the root to 1 through that edge is longer than b.
If the edge (u, l(u)) is too expensive, it is deleted by redirecting it to a terminal
node 0, i.e., by replacing it with (u, 0). A similar test is performed for the high
edge.

The algorithm checks whether edge (u, l(u)) is too expensive by checking
whether U [u] + c0[u, l(u)] + D[l(u)] > b, where c0[u, l(u)] is the length of the
edge, U(u) is the length of the shortest path from u up to the root in Bold,
and D(l(u)) is the length of the shortest path from l(u) down to 1 in Bold. By
convention, D(0) = ∞. Replacement of (u, l(u)) with (u, 0) is implemented by
calls to a standard BDD node creation function that ensures that the resulting
BDD is reduced [1].

When Δmax = 0, pruning retains only edges that belong to a shortest path. If
all edges in a BDD belong to a shortest path from the root to 1, then all paths
from the root to 1 are shortest paths, due to the Lemma 2. As a consequence,
the number of all paths in a pruned BDD is bounded by the number of optimal
solutions, as every path represents at least one optimal solution.

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 91

X2

11

a) b)

X1 X1

Fig. 3. Two pruned and sound BDDs over variables x1, x2. If b = 1, each edge in (a)
and (b) is part of an admissible path representing the solution (x1, x2) = (1, 0).

Function prune(B, c, b)
Bold ← 0
While B �= Bold

Bold ← B, update D[·], U [·]
For j = n − 1 to 0:

For u ∈ L[j]:
If U [u] + c0[u, l(u)] + D[l(u)] > b then
replace (u, l(u), h(u)) with (u, 0, h(u)) in B

Else if U [u] + c1[u, h(u)] + D[h(u)] > b then
replace (u, l(u), h(u)) with (u, l(u), 0) in B

D[u] ← min{c0[u, l(u)] + D[l(u)], c1[u, h(u)] + D[h(u)]}
Return B.

Fig. 4. Algorithm for pruning a BDD B with respect to cx ≤ b

Lemma 2. If every edge in a directed acyclic graph G belongs to a shortest
source-terminus (s-t) path, then every s-t path in G is shortest.

Proof. Suppose to the contrary there is an s-t path P in G that is not shortest.
Let P ′ be the shortest subpath of P that is part of no shortest s-t path. Then
P ′ contains at least two edges, which means that P ′ can be broken into two
subpaths A and B, and we write P ′ = A + B (Fig. 5). Since P ′ is minimal, A
is part of a shortest s-t path As + A + At, and B is part of a shortest s-t path
Bs + B + Bt. But

Bs < As + A (6)

(where < means “is shorter than”), since otherwise A + B is part of a shortest
s-t path As + A + B + Bt. But (6) implies

Bs + At < As + A + At

which contradicts the fact that As + A + At is a shortest path.

Even more, when Δmax = 0 we can efficiently construct exact BDD Bcx≤b from
the pruned BDD BΔ. Whenever an edge (u1, u2) skips a variable xi, and if a

92 T. Hadžić and J.N. Hooker

s

A

As

Bt

B

Bs

At

t

Fig. 5. Illustration of Lemma 2

s

0 0

00

1 3

1 3

t

Fig. 6. Example for pruning when Δmax > 0. Even though every edge belongs to a
path of length at most 4, there are paths of length 6.

cost of ci(0) is cheaper than ci(1), we forbid assignment xi = 1 by inserting a
node ui that breaks the edge (u1, u2) into (u1, ui) and (ui, u2) in such a way
that the low child of u is u2, l(ui) = u2, while the high child is 0, h(ui) = 0.
This operation increases the number of nodes by 1. Hence, it suffices for every
skipping edge and every skipped variable covered by that edge to insert a node
to get a BDD B′

Δ that represents exactly the set of optimal solutions. The exact
BDD Bcx≤b is obtained by reducing B′

Δ.
It follows that exact BDD cannot be exponentially bigger than pruned BDD

when Δmax = 0. A simple overestimation gives us a bound on the number of
nodes: |Bcx≤b| ≤ |BΔ| + |E| · n, where E is the set of edges in BΔ. Namely, for
each edge in E we can insert at most n nodes.

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 93

X2

11

a) b)

X1

X3

X1

Fig. 7. Two contracted and sound BDDs over variables x1, x2, x3 and objective function
x1 + x2 + x3. If b = 1, the contraction of a node introduces a solution (x1, x2, x3) =
(1, 0, 0) with cost 1.

When Δmax > 0, even when all inadmissible edges are removed, some paths
of length less than or equal to b may remain. This is because even if every edge
of a graph belongs to an s-t path of length at most b, the graph may yet contain
an s-t path longer than b. Consider for example the graph of Fig. 6. Every edge
belongs to an s-t path with length at most 4, but there is nonetheless an s-t
path of length 6.

7 Contraction

A node u in a BDD B is contractible with respect to parent node up, child node
uc, and cost restriction cx ≤ b if replacing edges (up, u) and (u, uc) with an edge
(up, uc) introduces no solutions with cost less than or equal to b. That is, if Bc

is the BDD resulting from the replacement, cx > b for all x ∈ Sol(Bc) \ Sol(B).
To contract node u is to replace (up, u) and (u, uc) with (up, uc). A BDD is
contracted if it contains no contractible nodes.

Contraction obviously preserves soundness, as it adds only solutions with
cost greater than b. Yet as with pruning, there are more than one sound and
contracted BDD for the same constraint set. Consider BDDs in Fig. 7 defined
over variables x1, x2, and x3, and objective function x1 + x2 + x3. If b = 1, both
BDDs are sound and contracted.

An algorithm that implements contraction is presented in Fig. 8. The al-
gorithm repeatedly contracts nodes u with only one non-zero child, until no
contracting is possible.

Lemma 3. The algorithm of Fig. 8 removes only contractible nodes.

Proof. Suppose that the algorithm contracts node h(u) by replacing (u, h(u))
with (u, h(h(u)). It suffices to show that the replacement adds no solutions with
cost less than or equal to b. (The argument is similar for the other three cases.)
Suppose that u has label xk, h(u) has label x�, and h(h(u)) has label xm. Any

94 T. Hadžić and J.N. Hooker

Function contract(B, c, b)
Bold ← 0
While B �= Bold

Bold ← B, update D[·], U [·]
For j = n − 1 to 0

For all u ∈ L[j]
If l(h(u)) = 0 then

If U [u] + c1[u, h(u)] + c0[h(u), h(h(u))] + D[h(h(u)] > b then
Replace (u, h(u)), (h(u), h(h(u))) with (u, h(h(u))) in B

If h(h(u)) = 0 then
If U [u] + c1[u, h(u)] + c1[h(u), l(h(u))] + D[l(h(u)] > b then

Replace (u, h(u)), (h(u), l(h(u))) with (u, l(h(u))) in B
If l(l(u)) = 0 then

If U [u] + c0[u, l(u)] + c0[l(u), h(h(u))] + D[h(h(u)] > b then
Replace (u, l(u)), (l(u), h(l(u))) with (u, h(l(u))) in B

If h(l(u)) = 0 then
If U [u] + c0[u, l(u)] + c1[h(u), l(l(u))] + D[l(l(u)] > b then

Replace (u, l(u)), (l(u), l(l(u))) with (u, l(l(u))) in B
Return B

Fig. 8. Algorithm for contracting a BDD B with respect to cost bound cx ≤ b

Function compile(b)
BΔ ← 1
for i = 1 to m

Bi ← BDD(gi)
BΔ ← BΔ ∧ Bi

if (|BΔ| > T or i = m)
BΔ ← prune(BΔ, c, b)
BΔ ← contract(BΔ, c, b)

return BΔ

Fig. 9. A simple compilation scheme to obtain a sound BDD, for problem (4) and cost
bound b, that is pruned and contracted

path through the new edge (u, h(h(u))) represents a solution that is also repre-
sented by a path through the original edges (u, h(u)) and (h(u), h(h(u))), unless
x� = 0. So we need only check that any solution with x� = 0 represented by
a path through (u, h(h(u))) has cost greater than b. But the cost of any such
solution is at least

U [u] + ck(1) + c∗k+1,�−1 + c�(0) + c∗�+1,m−1 + D[h(h(u))]
= U [u] + c1[u, h(u)] + c0[h(u), h(h(u))] + D[h(h(u))]

The algorithm ensures that node h(u) is not contracted unless this quantity is
greater than b.

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 95

Both pruning and contraction algorithm have worst-case running time that is
quadratic in the size of the underlying BDD. Both algorithms explore all the
BDD nodes in each internal iteration. There is at most linear number of these
iterations, since each time at least one edge is removed.

Fig. 9 presents simple algorithm for compiling a pruned and contracted BDD
for (4). The variable ordering is fixed to x1 < . . . < xn, and BDD(gi) denotes an
atomic compilation step that generates a BDD from the syntactical definition of
gi(x) ≥ bi. Pruning and contraction are applied not only to the final BDD, but
to intermediate BDDs when their size exceeds a threshold T .

8 Computational Results

We carried out a number of experiments to analyze the effect of cost bound-
ing on the size of BDDs. In particular, we wish to test the benefits of replac-
ing an exact cost-bounded BDD with a sound BDD obtained by pruning and
contraction.

Table 1. Experimental results for 0-1 linear programs. Each instance has n variables
and m constraints. The coefficients aj of 0-1 inequalities

�n
j=1 ajxj ≥ b are drawn

uniformly from [0, r], and b is chosen such that b = α ·
�n

j=1 aj where α indicates the
tightness of the constraints. The optimal value is c∗, and the largest feasible objective
function value is cmax. The size of the original BDD B is not shown when it is too large
to compute.

n = 20, m = 5

r = 50, α = 0.3

c∗ = 101, cmax = 588

Δ |BΔ| |Bcx≤b| |B|
0 5 20 8566

40 524 742 8566
80 3456 4328 8566

120 7037 11217 8566
200 8563 16285 8566
240 8566 13557 8566

n = 30, m = 6

r = 60, α = 0.3

c∗ = 36, cmax = 812

Δ |BΔ| |Bcx≤b| |B|
0 10 30 925610

50 2006 3428 925610
150 262364 226683 925610
200 568863 674285 925610
250 808425 1295465 925610
200 905602 1755378 925610

n = 40, m = 8

r = 80, α = 0.3

c∗ = 110, cmax = 1241

Δ |BΔ| |Bcx≤b|
0 12 40

15 402 1143
35 1160 3003
70 7327 11040

100 223008 404713
140 52123

n = 50, m = 5

r = 100, α = 0.1

c∗ = 83, cmax = 2531

Δ |BΔ| |Bcx≤b| |B|
0 12 83 4891332

100 103623 163835 4891332
200 1595641 2383624 4891332

n = 60, m = 10

r = 100, α = 0.1

c∗ = 67, cmax = 3179

Δ |BΔ| |Bcx≤b|
0 7 60

50 1814 5519
100 78023 111401

96 T. Hadžić and J.N. Hooker

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-1; cmin=27; cmax=588

Exact
Pruned and Contracted

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-2; cmin=62; cmax=588

Exact
Pruned and Contracted

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-3 cmin=101, cmax=588

Exact
Pruned and Contracted

 0

 5000

 10000

 15000

 20000

 25000

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-4; cmin=144; cmax=588

Exact
Pruned and Contracted

 0

 5000

 10000

 15000

 20000

 25000

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-5; cmin=204; cmax=588

Exact
Pruned and Contracted

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.2 0.4 0.6 0.8 1 1.2

20-5-50-6; cmin=274; cmax=588

Exact
Pruned and Contracted

Fig. 10. Illustration of how the size of exact BDDs Bcx≤b (upper curve) and pruned
and contracted BDDs BΔ (lower curve) in 0-1 linear instances depends on Δ. Here
there are 20 variables, 5 constraints, and r = 50. The horizontal axis indicates Δ as
a fraction of cmax − c∗. The tightness parameter α takes the values 0.1, 0.2, . . . , 0.6 in
the six plots. The difference between |Bcx≤b| and |BΔ| is larger when the constraints
are more relaxed (α is small).

We performed experiments over randomly generated 0-1 linear programs with
multiple inequalities and a few 0-1 instances from the MIPLIB library.1 All the
experiments were carried out on a Pentium-III 1 GHz machine with 2GB of mem-
ory, running Linux. To load instances we used customized version of a BDD-based
configuration library CLab [11], running over BDD package BuDDy [12].

For each instance we compared three BDDs: the BDD B representing the
original constraint set, the exact bounded BDD Bcx≤b, and the sound BDD BΔ

that results from pruning and contracting B. We show results for several values
of Δ. The optimal value c∗ and the largest feasible value cmax of the objective
function are shown for comparison.

1 Available at http://miplib.zib.de/miplib2003.php

Cost-Bounded Binary Decision Diagrams for 0-1 Programming 97

Table 2. Experimental results for 0-1 MIPLIB instances with Δ = 0

instance |BΔ| |Bcx≤b| |B|
lseu 19 99 -

p0033 21 41 375
p0201 84 737 310420

stein27 4882 6260 25202
stein45 1176 1765 5102257

The results show that both Bcx≤b and BΔ are substantially smaller than B
for rather large cost tolerances Δ. Also BΔ is almost always significantly smaller
than Bcx≤b. For example, in an instance with 30 variables and six constraints,
one can explore all solutions within a range of 50 of the optimal value 36 by
constructing a sound BDD that is only a tiny fraction of the size the full BDD
(2006 nodes versus 925,610 nodes). In problems with 40 and 60 variables, the
full BDD is too large to compute, while sound BDDs are of easily manageable
size for a wide range of objective functions values.

Fig. 10 illustrates how |Bcx≤b| and |BΔ| compare over the full range of ob-
jective function values. Note that |Bcx≤b| is actually larger than |B| for larger
values of Δ, even though Bcx≤b represents fewer solutions than B. The impor-
tant fact for postoptimality analysis, however, is that |Bcx≤b|, and especially
|BΔ|, are much smaller than |B| for small Δ.

Table 2 shows the results for a few 0-1 problems in MIPLIB for fixed Δ = 0.
A BDD for Δ = 0 is useful for identifying all optimal solutions. We observe
significant savings in space for both BΔ and Bcx≤b in comparison to B. For
instance lseu, we were not able to generate B, while both BΔ and Bcx≤b are
quite small.

The response times of algorithms for calculating valid domains and postopti-
mality analysis depend linearly on the size of an underlying BDD. In our expe-
rience, response time over a BDD having 10 000 nodes is within tens of millisec-
onds. A response time of up to one second corresponds to a BDD with about
250 000 nodes. In terms of memory consumption, one BDD node takes 20 bytes
of memory, hence 50 000 nodes take 1 MB.

9 Conclusion

We conclude that cost-bounded BDDs can yield significant computational ad-
vantages for cost-based domain analysis of 0-1 linear programming problems of
moderate size. Sound BDDs obtained by pruning and contraction produce more
significant savings. There is evidence that problems for which the original BDD
is intractable may often be easily analyzed using sound BDDs.

If a valid bound on the optimal value is available, cost-bounded BDDs could be
a competitive method for solution as well as postoptimality analysis, particularly
when the problem is nonlinear. This is a topic for future research.

98 T. Hadžić and J.N. Hooker

Acknowledgments

We would like to thank the anonymous reviewers for their valuable suggestions.

References

1. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using
binary decision diagrams. Technical report, Carnegie Mellon University (2006)
Presented at GICOLAG workshop (Global Optimization: Integrating Convexity,
Optimization, Logic Programming, and Computational Algebraic Geometry), Vi-
enna.

2. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes,
available online, IT University of Copenhagen (1997)

3. Barth, P.: Logic-based 0-1 Constraint Solving in Constraint Logic Programming.
Kluwer, Dordrecht (1995)

4. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27
(1978) 509–516

5. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38 (1959) 985?–999

6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (1986) 677–?691

7. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys 24 (1992) 293– 318

8. Becker, Behle, Eisenbrand, Wimmer: BDDs in a branch and cut framework. In:
International Workshop on Experimental and Efficient Algorithms (WEA), LNCS.
Volume 4. (2005)

9. Hadzic, T., Andersen, H.R.: A BDD-based Polytime Algorithm for Cost-Bounded
Interactive Configuration. In: AAAI-Press. (2006)

10. Hosaka, K., Takenaga, Y., Kaneda, T., Yajima, S.: Size of ordered binary decision
diagrams representing threshold functions. Theoretical Computer Science 180
(1997) 47–60

11. Jensen, R.M.: CLab: A C++ library for fast backtrack-free interactive product
configuration. http://www.itu.dk/people/rmj/clab/ (2007)

12. Lind-Nielsen, J.: BuDDy - A Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy (online)

YIELDS: A Yet Improved Limited Discrepancy

Search for CSPs�

Wafa Karoui1,2, Marie-José Huguet1, Pierre Lopez1, and Wady Naanaa3

1 Univ. de Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France
2 Unité ROI, Ecole Polytechnique de Tunisie, La Marsa, Tunisie

3 Faculté des Sciences de Monastir, Boulevard de l’environnement, Tunisie
{wakaroui,huguet,lopez}@laas.fr, naanaa.wady@planet.tn

Abstract. In this paper, we introduce a Yet ImprovEd Limited Dis-
crepancy Search (YIELDS), a complete algorithm for solving Constraint
Satisfaction Problems. As indicated in its name, YIELDS is an improved
version of Limited Discrepancy Search (LDS). It integrates constraint
propagation and variable order learning. The learning scheme, which is
the main contribution of this paper, takes benefit from failures encoun-
tered during search in order to enhance the efficiency of variable ordering
heuristic. As a result, we obtain a search which needs less discrepancies
than LDS to find a solution or to state a problem is intractable. This
method is then less redundant than LDS.

The efficiency of YIELDS is experimentally validated, comparing it
with several solving algorithms: Depth-bounded Discrepancy Search, For-
ward Checking, and Maintaining Arc-Consistency. Experiments carried
out on randomly generated binary CSPs and real problems clearly in-
dicate that YIELDS often outperforms the algorithms with which it is
compared, especially for tractable problems.

1 Introduction and Motivations

Constraint Satisfaction Problems (CSPs) provide a general framework for mod-
eling and solving numerous combinatorial problems. Basically, a CSP consists
of a set of variables, each of which can take a value chosen among a set of po-
tential values called its domain. The constraints express restrictions on which
combinations of values are allowed. The problem is to find an assignment of val-
ues to variables, from their respective domains, such that all the constraints are
satisfied [4][19].

CSPs are known to be NP-complete problems. Nevertheless, since CSPs crop
up in various domains, many search algorithms for solving them have been de-
veloped. In this paper, we are interested in complete methods which have the
advantage of finding at least a solution to a problem if such a solution exists. A
widely studied class of complete algorithms relies to depth first search (DFS).
� To be published in the proceedings of The Fourth International Conference on In-

tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’07), Brussels, Belgium.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 99–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

100 W. Karoui et al.

Forward Checking (FC) [9] and Maintaining Arc-Consistency (MAC) [17] are
two sophisticated algorithms belonging to the DFS class. Each of them enforces
during search a kind of local consistency to prune the search tree and therefore
to fasten problem solving. Another algorithm belonging to the DFS class is
Limited Discrepancy Search (LDS) [10]. Since value ordering heuristics cannot
avoid bad instantiations (i.e., choosing, for a given variable, a value that does not
participate in any solution), LDS tackles this problem by gradually increasing
the number of less-preferred options from the heuristic view-point (discrepancies)
[13][15][20].

Lots of recent research works try to improve this type of methods. One im-
portant area is concerned with learning from failures [2][8]. In this context and
in order to design a more efficient search method we proposed a subtantial im-
provement of LDS. We have then defined YIELDS (Yet Improved Limited Dis-
crepancy Search) [12]. YIELDS integrates constraint propagation as well as a
variable order learning scheme in order to reduce the size of the search tree. The
goal is to minimize the number of discrepancies needed to obtain a solution or
to state a problem is intractable. More precisely, this paper is dedicated to the
refinement of the learning mechanism of YIELDS and its evaluation on various
types of instances including randomly generated data and real problems.

The paper is organized as follows. The next section specifies the main con-
cepts and reviews the existing methods to solve constraint satisfaction problems,
especially those following Depth-First Search. Section 3 is the core of the paper:
it describes how to better explore the search space using Yet Improved Dis-
crepancy Search. Experimental experience is reported in Section 4. Section 5
describes related works and Section 6 concludes the paper.

2 Background

Constraint Satisfaction Problem. A CSP is defined by a tuple (X, D, C) where:
X = {X1, . . . , Xn} is a finite set of variables; D = {D1, . . . , Dn} is the set of
domains for each variable, each Di being the set of discrete values for variable
Xi; C = {C1, . . . , Cm} is a set of constraints.

An instantiation of a subset of variables corresponds to an assignment of these
variables by a value from their domain. An instantiation is said to be complete
when it concerns all the variables from X . Otherwise, it is called a partial in-
stantiation. A solution is a complete instantiation satisfying the constraints. An
inconsistency in the problem is raised as soon as a partial instantiation cannot
be extended to a complete one.

Tree Search Methods. Methods based on Depth-First Search are generally used to
quickly obtain a solution of a CSP. One has to successively instantiate variables
which leads to the development of a search tree in which the root corresponds
to uninstantiated variables and leaves to solutions. DFS methods are based on
several key-concepts:

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 101

– At each node of the tree, one has to determine how to choose a variable to be
instantiated and how to choose its value; this can be processed by variable
and value ordering heuristics, respectively.

– After each instantiation, one has to define what level of constraint propaga-
tion can be used to prune the tree.

– Moreover, when a dead-end occurs (i.e., an inconsistency) one has to specify
how to backtrack in the tree to develop another branch or to restart in order
to continue the search.

This type of methods is usually stopped either as soon as a solution is obtained
or when the complete tree has been explored without finding any solution. In
the worst case, it needs an exponential time in the number of variables.

Chronological Backtracking (CB) is a well-known method based on DFS for
solving CSPs. CB extends a partial instantiation by assigning to a new variable
a value which is consistent with the previous instantiated variables (look-back
scheme). When an inconsistency appears it goes back to the latest instantiated
variable trying another value.

Limited Discrepancy Search (LDS) is based on DFS for variable instantiation
and on the concept of discrepancy to expand the search tree. A discrepancy is
realized when the search assigns to a variable a value which is not ranked as the
best by the value ordering heuristic. The LDS method is based on the idea of
gradually increasing the number of allowed discrepancies while restarting:

– It begins by exploring the path obtained by following the values advocated
by the value ordering heuristic: this path corresponds to zero discrepancy.

– If this path does not lead to a solution, the search explores the paths that
involve a single discrepancy.

– The method iterates increasing the number of allowed discrepancies.

For binary trees, counting discrepancies is a quite simple task: exploring the
branch associated with the best boolean value, according to a value ordering
heuristic, involves no discrepancy, while exploring the remaining branch implies
a single discrepancy. For non binary trees, the values are ranked according to a
value ordering heuristic such that the best value has rank 1; exploring the branch
associated to value of rank k ≥ 1 leads to make k − 1 discrepancies.

LDS can be stopped either as soon as a first solution is found or when the
complete tree is expanded using the maximum number of allowed discrepancies.
Note that an improvement of LDS is Depth-bounded Discrepancy Search (DDS)
which first favours discrepancies at the top of the search tree (i.e., on the most
important variables).

Ordering heuristics. They aim to reduce the search space to find a solution.
Depending on their type they provide an order for the selection of the next
variable to consider or the next value for a variable instantiation. These heuristics
can be static (i.e., the orders are defined at the beginning of the search) or
dynamic (i.e., the orders may change during search). The efficiency of DFS
methods such as CB or LDS clearly depends on the chosen ordering heuristic.

102 W. Karoui et al.

For CSPs, several common variable and value ordering heuristics are defined such
as dom (i.e., min-domain) or dom/deg for variable ordering, and min-conflict for
value ordering (see [2] and [8]).

Propagations. To limit the search space and then to speed up the search process,
constraint propagation mechanisms can be joined to each variable instantiation.
The goal of these propagations is to filter the domain of some not yet instantiated
variables. Various levels of constraint propagation can be considered in a tree
search method. The most common are:

– Forward Checking (FC) which suppresses inconsistent values in the domain of
not yet instantiated variables linked to the instantiated one by a constraint.

– Arc-Consistency (AC) which corresponds to suppress inconsistent values in
the domain of all uninstantiated variables.

These constraint propagation mechanisms can be added both in Chronological
Backtracking and in Discrepancy Search. In the rest of the paper, CB-FC refers
to the CB method including FC propagation while CB-AC includes AC propa-
gations (CB-AC corresponds to MAC algorithm [17]).

3 The Proposed Approach

3.1 Overcoming the Limits of LDS

The objective of our approach is to minimize the number of discrepancies needed
to reach a solution or to declare that the problem is intractable. To do that, we
propose to use the dead ends encountered during a step of the LDS method
to order the problem variables for the following steps. In fact in LDS, only the
heuristic on the order of variables selects the path in the search space (see Algo-
rithms 1 and 2). This means that when we increment the number of discrepancies
and reiterate LDS, we have frequently the same initial variable to instantiate. If
we assume that this variable is the failure reason and that it eliminates values
required for the solution, it is useless to develop again its branch.

Algorithm 1. LDS(X, D, C, k-max, Sol)
1: k ← 0
2: Sol ← NIL
3: while (Sol = NIL) and (k ≤ k max) do
4: Sol ← LDS iteration(X, D, C, k, Sol)
5: k ← k+1
6: end while
7: return Sol

To avoid this kind of situations, we associate a weight, initially equal to zero,
to each variable. This weight is incremented every time this variable fails because
of the limit on the number of allowed discrepancies: we cannot diverge on this

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 103

Algorithm 2. LDS iteration(X, D, C, k, Sol)
1: if X = ∅ then
2: return Sol
3: else
4: xi ← BestVariable(X) // variable instantiation heuristic
5: vi ← BestValue(Di, k) // value instantiation heuristic
6: if vi �= NIL then
7: D’ ← Update(X\{xi}, D, C, (xi, vi)) // constraint propagation
8: I ← LDS iteration(X\{xi}, D’, C, k, Sol

�
{(xi, vi)})

9: if I �= NIL then
10: return I
11: else
12: if k > 0 then
13: Di ← Di\{vi}
14: return LDS iteration(X, D, C, k-1, Sol) // can diverge
15: end if
16: end if
17: end if
18: return NIL
19: end if

variable despite its domain of values is not empty. In the following iterations, this
variable will be privileged and will be placed higher in the branch developed by
the LDS method. Like this, we will avoid the situation of inconsistency caused
by this variable. Therefore, the choice of variable to be instantiated is based,
first, on the usual heuristic (dom for example), second, on the variable weight,
finally, if tied variables still remain, the order of indexation can be considered.

Thus, by introducing the notion of weight, our purpose is to correct the heuris-
tic for variable instantiation guiding it to variables concretely constrained. These
variables greatly influence the solution search. Therefore, we correct mistakes of
the heuristic by adding the weight notion which can be considered as a type
of dynamic learning. Like this, we can exploit previous failures and take use-
ful information for the following steps. To speed up the process, difficult and
intractable subproblems are pushed up at the top of the search tree.

This improvement of LDS method besides its effects on the variable ordering,
stops the LDS iterations when an inconsistency is found. In fact, if an incon-
sistency arises with k allowed discrepancies, other iterations, from k+1 to the
maximum number of discrepancies, are unnecessary since they will discover again
the same inconsistency.

For LDS, when we authorize a fixed number of discrepancies we can consume,
completely or not, these authorized discrepancies. If the totality of discrepan-
cies is consumed and no solution is found, a new iteration of LDS is launched
incrementing the number of allowed discrepancies. In contrast, if the allowed
discrepancies are not consumed, it is not necessary to continue to reiterate LDS
with a greater number of discrepancies even if no solution has been found. In
such situation, one can be sure that the problem is intractable (all the feasible
values of each variable have been tried without using the number of allowed
discrepancies).

104 W. Karoui et al.

3.2 The YIELDS Algorithm

The YIELDS method is based on a learning from failures technique. This learning
produces a new way to go all over the search space contributing to speed up the
resolution. Moreover, the propagation mechanisms lead us to stop the search
before we reach the maximum number of discrepancies in the case of intractable
problems, without missing solution if it does exist.

The completeness of YIELDS can be proved: if the problem has a solution,
YIELDS does find it. In fact, when the problem is tractable, the learning technique
has produced a permutation on the order of variables. The iteration of YIELDS
which has discovered the solution, called YIELDS(k), is based on a variable or-
dering O, learnt during the previous iterations. We can say that YIELDS(k) is
equivalent to CB-FC directly associated with the variable ordering O.

When the problem is intractable, YIELDS stops the search with anticipation.
The last iteration does not consume all allowed discrepancies: it can be compared
to a call to CB-FC because the bound on discrepancies was not at the origin of
the break. Like this, the method is complete (see Algorithms 3 and 4).

Algorithm 3. YIELDS(X, D, C, k max, Sol)
1: k ← 0
2: Sol ← NIL
3: Exceed ← False
4: while (Sol = NIL) and (k ≤ k max) do
5: Sol ← YIELDS iteration(X, D, C, k, Sol)
6: k ← k+1
7: if !Exceed then
8: exit
9: end if

10: end while
11: return Sol

The principle of YIELDS is exactly the same as LDS: it considers, initially,
branches of the tree which cumulate the smallest number of discrepancies. The
first difference is that a weight (initially the same for all variables) is associated to
each variable and every time a variable fails because of the limit on discrepancies,
its weight is incremented to guide next choices of the heuristic. The second
difference is that the number of discrepancies is not blindly incremented until
the maximum of discrepancies allowed by the search tree is reached (as it is done
in LDS). Thus, the new method consumes less discrepancies than LDS or even
DDS.

Definition 1. Let P = (X, D, C) be a binary CSP of n variables and wi a weight
associated to each variable xi. The weight vector W of P is the vector composed
of weights of all variables of the problem:

W (P) = [w0, w1, ..., wn−1]

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 105

Algorithm 4. YIELDS iteration(X, D, C, k, Sol)
1: if X = ∅ then
2: return Sol
3: else
4: xi ← First VariableOrdering(X,Weight)
5: vi ← First ValueOrdering(Di, k)
6: if vi �= NIL then
7: D’ ← Update(X\{xi}, D, C, (xi, vi))
8: I ← YIELDS iteration(X\{xi}, D’, C, k, Sol

�
{(xi, vi)})

9: if I �= NIL then
10: return I
11: else
12: if k > 0 then
13: Di ← Di \{vi}
14: return YIELDS iteration(X, D, C, k-1, Sol)
15: else
16: Weight[xi] ← Weight[xi]+1
17: Exceed ← True // impossible to diverge
18: end if
19: end if
20: end if
21: return NIL
22: end if

Definition 2. Let W1 and W2 be two weight vectors of P , a binary CSP. The
variation of weights of P is given by ΔW the vector difference between W1 and
W2:

ΔW (P) = W2(P) − W1(P)

Proposition 1. Let assume that variable weights are initially equal and that
they are incremented every time that we do not found a variable value which
respects the limit on the number of authorized discrepancies. Let consider two
successive iterations of YIELDS for the resolution of P a binary CSP. If the
variation of weights ΔW (P) between these iterations is equal to the null vector,
then we can be sure that:

1. The process of learning comes to end.
2. P is an intractable problem.

Proof: Since ΔW (P) = 0 the last iteration was not interrupted because of the
limit on the number of authorized discrepancies (see Algorithm 2). In addition,
it is obvious that an iteration of YIELDS without the limit on the number of
discrepancies corresponds to CB-FC which is a complete method. Therefore, if
the last iteration corresponds to a complete method and that no solution has
been found yet, the problem is intractable. �

3.3 Illustrative Examples

As an example for an intractable problem, let consider a CSP composed of
three variables x0, x1, x2 and four values 0, 1, 2, 3 presented by its incompatibility
diagram (see Figure 1).

106 W. Karoui et al.

0 1 2 3 0 1 2 3

0 1 2 3

x0 x1

x2

Fig. 1. Incompatibility diagram

The variable ordering initially follows the ascending order, then it is based first
on min-domain order (dom), then on min-domain plus weights order (see Table
1), while min-conflict heuristic is applied for value ordering. In this example, the
weights do not influence the variables order which is always the same (ascending
order). Reminding the way retained for counting discrepancies (see Section 2),
the maximum number of discrepancies is here equal to 9.

0

0

0

0 1

1

3 0 1 3

0 1 2 0 1 3

0 1 3 0 1 3

0 1 2
32

YIELDS(4)YIELDS(3)YIELDS(2)YIELDS(1)YIELDS(0)

x0

x1

x2

Fig. 2. Illustration of YIELDS on an intractable problem

Table 1. Variable weights for the intractable problem

Weight Initial YIELDS(0) YIELDS(1) YIELDS(2) YIELDS(3) YIELDS(4)
W [x0] 0 1 2 3 4 4
W [x1] 0 1 3 3 3 3
W [x2] 0 0 0 0 0 0

From iterations YIELDS(0) till YIELDS(4), YIELDS develops the same search
trees as LDS (see Figure 2). In YIELDS(4), we can see that even if we authorize
4 discrepancies, only 3 are used. The iterations of the YIELDS method are inter-
rupted but not because of the limit on discrepancies. In such a context, YIELDS
stops the search. LDS would continue iterations until LDS(9) and would repeat
exactly the same search tree.

As an example for a tractable problem, let consider the CSP (X, D, C) defined
by X = {x0, x1, x2}, D = {D0, D1, D2} where D0 = D1 = D2 = {0, 1, 2, 3, 4}.
The set of contraints C is represented by the following set of incompatible tu-
ples: {(x0, 0), (x1, 4)} ∪ {(x0, 0), (x2, 4)} ∪ {(x0, 1), (x1, 4)} ∪ {(x0, 1), (x2, 4)}

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 107

∪ {(x0, 2), (x1, 4)} ∪ {(x0, 2), (x2, 4)} ∪ {(x0, 3), (x1, 4)} ∪ {(x0, 3), (x2, 4)} ∪
{(x0, 4), (x2, 2)} ∪ {(x0, 4), (x2, 3)} ∪ {(x1, 0), (x2, 0)} ∪ {(x1, 0), (x2, 1)} ∪
{(x1, 0), (x2, 2)} ∪ {(x1, 0), (x2, 3)} ∪ {(x1, 1), (x2, 0)} ∪ {(x1, 1), (x2, 1)} ∪
{(x1, 1), (x2, 2)} ∪ {(x1, 1), (x2, 3)} ∪ {(x1, 2), (x2, 0)} ∪ {(x1, 2), (x2, 1)} ∪
{(x1, 2), (x2, 2)} ∪ {(x1, 2), (x2, 3)} ∪ {(x1, 3), (x2, 0)} ∪ {(x1, 3), (x2, 1)} ∪
{(x1, 3), (x2, 2)} ∪ {(x1, 3), (x2, 3)}.

In this example, we use the same ordering heuristics as previously. Applying
CB-FC to solve this CSP, the resulting search tree consists of 24 expanded nodes
(EN) (see Figure 3). Applying LDS, we obtain a bigger search tree of 95 EN. If
we apply YIELDS, we obtain a search tree of only 13 EN (see Figure 4) due to
the increasing of x1 priority which contributes to speed up the search.

0

0 2 4

1

5

0 2 0 2 0 2 0 2

1 3

1 1 1 13 3 3 3

1

x1

x2

17

x0

x1

x2
4

24 EN

Fig. 3. CB-FC search tree

Table 2. Variable weights for the tractable problem

Weight Initial YIELDS(0) YIELDS(1) YIELDS(2)
W [x0] 0 1 2 2
W [x1] 0 1 3 3
W [x2] 0 0 0 0

YIELDS(0) YIELDS(1) YIELDS(2)

1

3

4

5

x0

0

x1

0

x2

x0

0

x1

0

x2

1

1

0

x1

0

4

x2

4

13 EN

x0

Fig. 4. YIELDS search tree

108 W. Karoui et al.

4 Experimental Results

The problems investigated in our experiments are random binary CSPs, latin
squares, and job-shop problems. We compared YIELDS with standard versions
of DDS, CB-FC, and CB-AC. The arc-consistency algorithm underlying CB-AC
is AC-3.1 [1][21]. The variable ordering heuristic used by all algorithms is dom.
For value ordering, we used the min-conflict heuristic. The evaluation criteria are
the number of expanded nodes (NED) and CPU time in seconds. Reported re-
sults are expressed as average values. All algorithms were implemented in C++.
They were run under Windows XP Professional on a 1.6 GHz PC having 1 Go
of RAM.

Random Binary CSPs
For random binary CSPs, we used the generator developed by Frost et al. which is
available in [3]. Problems are generated according to model B. We experimented
on problems involving n = 30 variables, a uniform domain size of d = 25. The
problem density p1 (i.e., the ratio of the number of constraints in the constraint
graph over that of all possible constraints) varied from 0.1 (sparse problems:
from line 1 to line 3 in Table 3) to 0.3 (dense problems: from line 4 to the end in
Table 3). The constraint tightness p2 (i.e., the ratio of the number of disallowed
tuples over that of all possible tuples) varied so that we obtain instances around
the peak of complexity. The size of samples is 100 problem instances for each
data point.

Table 3. Random binary CSPs instances

instances DDS YIELDS CB-FC CB-AC

<n,d,C,T> NED CPU NED CPU NED CPU NED CPU

<30,25,44,531>(35% sat) 10210510 90.61 6273 0.04 1427970 10.2 71 0.08

<30,25,44,526>(48% sat) 21876033 207.8 8526 0.06 1732513 11.92 250 0.19

<30,25,44,518>(73% sat) 1447242 11.72 3543 0.02 178168 1.26 270 0.21

<30,25,131,322>(39% sat) � � 1342742 12 1898943 16.45 203862 152.66

<30,25,131,320>(56% sat) � � 1360525 11.76 1374413 11.92 94277 79.92

<30,25,131,318>(74% sat) � � 1503581 12.39 1577180 13.24 54870 39.9

<30,25,131,322>(sat) � � 326739 3.07 1101429 9.37 46583 35

<30,25,131,320>(sat) � � 337996 3.05 827566 6.98 55165 58.46

<30,25,131,318>(sat) � � 341994 3.12 843548 7.06 16876 11.87

For all considered problems, the results clearly indicated that YIELDS outper-
forms DDS on sparse and dense problems (in Table 3, “�”means that execution
times are of several hours).

For sparse problems, YIELDS is faster than CB-AC and CB-FC, albeit CB-
AC develops less nodes.

For dense problems, YIELDS is also faster than CB-AC and CB-FC. However
the advantage is less significant as we move toward dense problems. If we iso-
late tractable problems (last three lines in Table 3), results become particularly

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 109

interesting and YIELDS clearly outperforms other considered methods. For in-
tractable problems, CB-FC remains the better method.

Latin Squares and Job-Shop Scheduling problems
For the job-shop problems, we investigated the Sadeh instances [18]. For tested
instances, YIELDS is clearly better than CB-FC and CB-AC (see Table 4).

Table 4. Job-Shop instances

instances CB-FC YIELDS CB-AC

NND CPU NND CPU NND CPU

enddr1-10-5-1 802233 362 68997 <1 53186 897

enddr1-10-5-10 176015 94 57 <1 113486 457

ewddr2-10-5-1 156388 58 910 <1 92729 480

ewddr2-10-5-10 104032 41 55 <1 64535 372

e0ddr1-10-5-1 1262247624 13030 17133261 113 6262916 1752

We also studied experiments on Latin Squares obtained by the generator of [7].
Selected problems have an order of 10. Results showed that YIELDS is always
faster than all considered methods (see Table 5).

Table 5. Latin Squares instances

instances CB-FC YIELDS CB-AC

NND CPU NND CPU NND CPU

qg.1030 7940160 74 158808 16 68276 72.5

qg.1032 26070985 239 128424 71 80215 105

qg.1034 400490 3.91 1775 0.02 181934 212

qg.1036 18976 0.19 364 0.01 13609 17.6

qg.1038 22795 0.21 114 0.01 14393 18

5 Related Works

Many research works try to improve known methods integrating learning from
failures. In this context, the following methods were proposed:

1. Squeaky Wheel Optimization (SWO) [11] which is a general optimization
approach for local search. In SWO, a greedy constructor produces an initial
solution in which difficult elements are identified and guides the construction
of a new solution (the process is iterated until some stopping criterion is met).
This strategy has not completeness guarantee.

2. Impact-Based Search (IBS) [16] which is also a general search method based
on a probing-like integer programming technique. In IBS, the reduction of
the search space following a variable instantiation is used to prioritize the
variables to consider. This method differs from ours by the used information
for learning and by the nature of restarts.

110 W. Karoui et al.

3. F-O-Opt (failure-driven algorithm for Open Hidden-variable Weighted Con-
straint Optimization Problems) which is one of the algorithm proposed in [5]
for open constraint optimization. The context for this search method is dy-
namic and constraints are updated while searching so used learning technics
are local and different.

4. Last Conflict reasoning (LC) [2] which is a learning search method. This
method was improved by Grimes and Wallace in [8] including restarts to the
original method. Unlike our method, this method learns from constraints
and, in Grimes improvement, added restarts are not relied to problem prop-
erties. In our method, learning is based on variables and restarts are based
on dicrepancies. Gathered information on discrepancies variation may rep-
resent an additional information on the considered problem and contribute
to accelerate the search.

6 Conclusion and Further Work

In this paper we present a novel method, Yet Improved Discrepancy Search
(YIELDS), which takes advantages from failures to guide the search. The goal
of this method is to correct the variable ordering heuristic exploiting some fails
and detects whether a problem is intractable without doing all the iterations of
LDS. We propose an effective YIELDS algorithm and describe how to integrate
it into a classical LDS algorithm.

An experimental study carried out on numerous random and real CSPs have
shown how it is possible to obtain good results.

In the near future, we plan to set up an association of two learning ways,
weights and no-goods which, in our opinion, will constitute a helpful tool for the
proposed method. In addition, we think that a careful computational study on
other known benchmarks will present an interesting issue to better illustrate the
usefulness of YIELDS. Comparisons with some related works are also planned.

References

1. C. Bessière and J.-C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI-01, pages 309–315, Seattle, USA, 2001

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings ECAI’04, pages 146–150, Valencia, Spain,
2004

3. D. Frost, C. Bessière, R. Dechter, and J.-C. Régin, Random uniform CSP genera-
tors, http://www.lirmm.fr/~bessiere/generator.html

4. R. Dechter. Constraint processing, Morgan Kaufmann, San Francisco, 2003

5. B. Faltings and S. Macho-Gonzalez, Open constraint satisfaction. In Van Henten-
ryck, P., ed., Proceedings of CP’2002, LNCS No. 2470, Springer, pages 356–370,
2002

6. I.P. Gent and P. Prosser. Inside MAC and FC. APES Research Group Report
APES-20-2000, 2000

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs 111

7. C.P. Gomes. Generator of Quasigroup Completion Problem and related problems,
http://www.cs.cornell.edu/gomes/new-demos.htm

8. D. Grimes and R. J. Wallace. Learning from failures in constraint satisfaction
search. AAAI Workshop on Learning for Search, Boston, Massachusetts, USA,
2006

9. R. Haralick and G. Elliot, Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence, 14:263–313, 1980

10. W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proceedings
IJCAI-95, pages 607–613, Montréal, Canada, 1995

11. D. Joslin and D. Clements. Squeaky Wheel Optimisation. In Proceedings Sixteenth
National Conference on Artificial Intelligence-AAAI’98, pages 340–346, 1998.

12. W. Karoui, M.J. Huguet, P. Lopez et W. Naanaa. Amélioration par apprentissage
de la recherche à divergences limitées. In Proceedings JFPC’05, pages 109–118,
Lens, France, 2005

13. R.E. Korf. Improved limited discrepancy search. In Proceedings AAAI-96/IAAI-96,
Vol. 1, pages 286–291, Portland, Oregon, USA, 1996

14. C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc-consistency in
MAC: A new perspective. In Proceedings First International Workshop on Con-
straint Propagation and Implementation, Toronto, Canada, 2004

15. N. Prcovic. Quelques variantes de LDS. In Proceedings JNPC’02, pages 195–208,
Nice, France, 2002

16. P. Refalo. Impact-based search strategies for constraint programming. In Wallace,
M., ed., Principles and Practice of Constraints Programming-CP’04, LNCS No.
3258, Springer, pages 557–571, 2004

17. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings PPCP-94, Seattle, USA, 1994

18. N. Sadeh and M.S. Fox. Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artificial Intelligence, 86:1–41, 1996

19. E. Tsang. Foundations of Constraint Satisfaction. Academic Press Ltd, London,
1993

20. T. Walsh. Depth-bounded discrepancy search. In Proceedings IJCAI-97, pages
1388–1395, Nagoya, Japan, 1997

21. Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In Proceedings
IJCAI-01, pages 316–321, Seattle, USA, 2001

A Global Constraint for Total Weighted

Completion Time

András Kovács1,3 and J. Christopher Beck2

1 Projet Contraintes, INRIA Rocquencourt, France
2 Dept. of Mechanical and Industrial Engineering, University of Toronto, Canada
3 Computer and Automation Research Institute, Hungarian Academy of Sciences

akovacs@sztaki.hu, jcb@mie.utoronto.ca

Abstract. We introduce a novel global constraint for the total weighted
completion time of activities on a single unary capacity resource. For
propagating the constraint, an O(n4) algorithm is proposed, which makes
use of the preemptive mean busy time relaxation of the scheduling prob-
lem. The solution to this problem is used to test if an activity can start at
each start time in its domain in solutions that respect the upper bound on
the cost of the schedule. Empirical results show that the proposed global
constraint significantly improves the performance of constraint-based ap-
proaches to single-machine scheduling for minimizing the total weighted
completion time. Since our eventual goal is to use the global constraint
as part of a larger optimization problem, we view this performance as
very promising. We also sketch the application of the global constraint
to cumulative resources and to problems with multiple machines.

1 Introduction

Many successful applications of constraint programming (CP) to optimization
problems exhibit a “maximum type” optimization criteria, characterized by min-
imizing the maximum value of a set of variables (e.g., makespan, maximum tar-
diness, or peak resource usage in scheduling). Such criteria exhibit strong back
propagation: placing an upper bound on the cost variable results in the pruning
of the domain (i.e., the reduction of the maximum value) of the constituent vari-
ables. CP has not been as successful for other practically important optimization
criteria such as “sum type” objective functions characterized by the minimiza-
tion of the sum of a set of variables. Examples in the scheduling domain include
total weighted completion time, weighted tardiness, weighted earliness and tardi-
ness, and the number of late jobs. Nearly all CP-based approaches to scheduling
with these criteria use only the basic sum constraint to propagate the objective
function. However, back propagation of the sum constraint is weak because it is
often the case that the maximum value of each decision variable is supported by
the minimum values of all the other decision variables. The significance of more
efficient global constraints for back propagation has been emphasized by Focacci
et al. in [10,11].

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 112–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Global Constraint for Total Weighted Completion Time 113

Our purpose is to develop algorithms for propagating “sum type” objective
functions in constraint-based scheduling. In this paper, we address the total
weighted completion time criterion on a single unary resource. The total weighted
completion time criterion has equivalents in a wide range of applications. In con-
tainer loading problems, it is a frequent requirement that the center of gravity of
the loaded container has to be situated as low as possible and, depending on the
means of transport, either above the axes of the vehicle or in the center of the
container. Along each axis of the coordinate system, the location of the center
of gravity of box-shaped goods corresponds to the average weighted completion
time of the activities in a schedule. The weight of the activities equals the physi-
cal weight of the goods, while their duration corresponds to the length, and their
resource requirement to the cross section of the loaded goods. In lot-sizing prob-
lems, different items are produced on a single machine, with specific deadlines.
The cost of a solution is composed of a holding cost and a setup or ordering
cost. The holding cost is computed as the total weighted difference of deadlines
and actual production times. Apart from a constant factor, this is equivalent
to the weighted distance of the activities from a remote point in time, which
corresponds to the weighted completion time in a reversed schedule. In all these
applications, the total weighted completion time constraint appears as only one
component of a complex satisfaction or optimization problem, in conjunction
with various other constraints. This justifies our ambition to develop a generic
constraint propagation algorithm, instead of customized search algorithms for
specific problems.

The remainder of this paper is organized as follows. In the next section, we
introduce the notation used in the paper. In Section 3 we review the related liter-
ature. This is followed by the presentation of the proposed constraint propagation
algorithm (Section 4). In Section 5, we evaluate the performance of our algorithm
on a set of benchmark problems from the literature. In Section 6, we sketch ex-
tensions of this work to cumulative resources and multiple resource problems. Fi-
nally, conclusions are drawn and directions of future research are outlined.

2 Definitions and Notations

While the proposed constraint has potential applications in various fields, we
present this work in the context of a single, unary capacity resource scheduling
problem where the optimization criterion is the minimization of total weighted
completion time.

This scheduling problem involves n activities, Ai, to be executed without
preemption on a single, unary resource. Each activity is characterized by its
processing time, pi, and a non-negative weight, wi. The start time variable of Ai

will be denoted by Si. When appropriate, we call the current lower bound on a
start time variable Si the release time of the activity, and denote it by ri. The
total weighted completion time of the activities will be denoted by C. We assume

114 A. Kovács and J.C. Beck

that all data are integral. Thus, the constraint that enforces C =
∑

i wi(Si + pi)
on activities takes the following form.

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], C)

Throughout this paper we assume that pi and wi are constants. In applica-
tions where this assumption is restrictive, the lower bounds can be used during
the propagation. Our algorithm filters the domain of the Si variables, while it
tightens only the lower bound of C. The minimum and maximum values in the
current domain of a variable X will be denoted by X

¯
and X̄, respectively.

3 Related Literature

The complexity, approximability, and algorithmic aspects of total weighted com-
pletion time scheduling problems have been studied extensively. The most widely
discussed problem variants are the single and parallel machine versions with re-
lease dates. The classical scheduling notations for these problems are 1|ri|

∑
wiCi

and P |ri|
∑

wiCi, respectively. Both variants are known to be NP-hard in the
strong sense, even with uniform weights. Various polynomially solvable cases
have been identified: without release dates, ordering the activities according to
the Weighted Shortest Processing Time (WSPT) rule, i.e., by non-decreasing
pi/wi yields an optimal solution. The preemptive version of the single machine
problem with release dates and unit weights (1|ri, pmtn|

∑
Ci) is polynomially

solvable using Shortest Remaining Processing Time rule, but adding non-uniform
weights renders it NP-hard. A comprehensive overview of the complexity of re-
lated scheduling problems is presented in [7].

Linear programming (LP) and combinatorial lower bounds for the single ma-
chine problem have been studied and compared by Goemans et al. [12] and Dyer
& Wolsey [9]. The preemptive time-indexed relaxation corresponds to an assign-
ment problem in which variables indicate whether activity Ai is processed at
time t. In an alternative LP relaxation, the non-preemptive time-indexed formu-
lation, variables express if activity Ai is completed at time t. Dyer & Wolsey [9]
have shown that the latter is strictly stronger than the former. Since these LP
formulations only include continuous variables, but their size depends both on
the number of activities and the number of time units, they can be solved in
pseudo-polynomial time.

A different LP relaxation has been proposed by Schulz [18], using completion
time variables. Subsequently, Goemans et al. [12] proved that this relaxation is
equivalent to the preemptive time-indexed formulation, by showing that a pre-
emptive schedule that minimizes the mean busy time (see Section 4) yields the
optimal solution for both relaxations. Moreover, this preemptive schedule can be
found in O(n log n) time, where n is the number of activities. The authors also
propose two randomized algorithms (and their de-randomized counterparts) to
convert the preemptive schedule into a feasible solution of the original problem,
and prove that these algorithms lead to 1.69 and 1.75-approximations, respec-
tively. These results also imply a guarantee on the quality of the lower bound.

A Global Constraint for Total Weighted Completion Time 115

Polynomial time approximation schemes for the single and parallel machines
case, as well as for some other variants are presented in Afrati et al. [1]. The
time complexity of the algorithm to achieve a (1 + ε)-approximation for a fixed
ε is O(n log n), but the complexity increases super-exponentially with ε.

Papers presenting complete solution methods for different versions of the total
weighted completion time problem include a classical work of Belouadah et al. [6]
and more recent papers by Jouglet et al. [13] and Pan & Shi [17] for a single
machine, Nessah et al. [15] for identical machines, and Della Croce et al. [8], as
well as Akkan and Karabatı [2] for the two-machine flowshop problem. Most of
these algorithms make use of lower bounds similar to the ones discussed above,
as well as various dominance rules and customized branching strategies.

The literature of global constraint propagation algorithms for “sum type”
objective functions in scheduling is scarce. Notable exceptions are the works of
Focacci et al. [10,11] on embedding relaxations of the Traveling Salesman Prob-
lem into global constraints. Baptiste et al. [4] proposed a branch-and-bound
method for minimizing the total tardiness on a single machine. While building
the schedule chronologically, the algorithm makes use of constraint propagation
to filter the set of possible next activities by examining how a given choice affects
the value of the lower bound. Baptiste et al. [5] address the minimization of the
number of late activities on a single resource, and generalize some well-known
resource constraint propagation techniques for the case where there are some
activities that complete after their due dates. The authors also propose prop-
agation rules to infer if activities are on time or late, but the applicability of
these inference techniques is restricted by the fact that they incorporate domi-
nance rules that might be invalid in more general contexts. For propagating the
weighted earliness/tardiness cost function in general resource constrained project
scheduling problems, Kéri & Kis [14] defined a simple method for tightening time
windows of activities by eliminating values that would lead to solutions with a
cost higher than the current upper bound.

4 Propagating Total Weighted Completion Time on a
Unary Resource

Our propagation algorithm relies on solving the preemptive mean busy time relax-
ation [12] of the scheduling problem. This relaxed problem minimizes

∑
i wiMi,

where Mi denotes the mean busy time of activity Ai, i.e., the average point in time
at which the machine is busy processing Ai. This is easily calculated by finding
the mean of each time point at which activity Ai is executed.

The underlying idea of our constraint propagator is to exploit the above re-
laxation to obtain a lower bound on the solution value of the original problem.
However, instead of computing only one lower bound, we recompute the lower
bound for restricted versions of the problem in which the value of a start time
variable Si is bound to a given value t. We denote such restricted problems by
Π〈Si = t〉, and the resulting lower bound on C by C

¯
〈Si = t〉. Our domain

filtering mechanism will rely on the following proposition.

116 A. Kovács and J.C. Beck

Proposition 1. If C̄ < C
¯

〈Si = t〉, then t can be removed from the domain of
Si.

In what follows, we first present an algorithm to compute the optimal relaxed
schedule, and then show how this relaxed schedule can be quickly recomputed
for the restricted problems. These algorithms will be illustrated using the sample
problem introduced in Fig. 1.

ri pi wi wi/pi

A0 0 5 10 2
A1 4 2 10 5
A2 5 4 12 3
A3 13 2 8 4

A
0

A
1

A
2

0 5 10 15

A
3

Fig. 1. Left: The input data for the sample problem. Right: The optimal solution of
the sample problem. The total weighted completion time is 372.

4.1 Computing a Lower Bound

The optimal solution of the preemptive mean busy time relaxation can be com-
puted in O(n log n) time [12]. The algorithm maintains a priority queue of the
activities sorted by non-increasing wi/pi. At each point of time, t, the queue con-
tains the activities Ai with ri ≤ t that have not yet been completely processed.
Scheduling decisions must be made each time a new activity is released or an
activity is completely processed. In either case, the queue is updated and a frag-
ment of the first activity in the queue, lasting until the next decision point, is
inserted into the schedule. If the queue is empty, but there are activities not yet
released, a gap is created. Technically, gaps are represented as fragments of a
zero-weight, zero-release-time activity, and will be called empty fragments. We
assume that the schedule ends with a sufficiently long empty fragment. Since
there are at most 2n release time and activity completion events, and updating
the queue requires O(log n) time, the algorithm runs in O(n log n) time.

The optimal relaxed schedule for the sample problem is presented in Fig. 2.
The objective value of this relaxed solution of 362. The fragments of activity Ai

are denoted by αi, α
′
i, α

′′
i , etc. Empty fragments are named ε, ε′, ε′′, etc.

4.2 Incrementally Recomputing the Lower Bound

The above algorithm can easily be modified to compute optimal relaxed solutions
for restricted problems Π〈Si = t〉, by assigning ri = t and wi = ∞. This gives
activity Ai the largest wi/pi ratio among all the activities, ensuring that it
starts at t and is not preempted. Relaxed solutions for various restrictions on
the sample problems are presented in Fig. 3.

We apply the above method only once for each activity Ai, restricting it to
start exactly at its release time, i.e., for Π〈Si = ri〉. For other possible start

A Global Constraint for Total Weighted Completion Time 117

 '0 1 2

0 5 10 15 20

30

Fig. 2. The solution of the relaxed problem, with objective value 362. This is a lower
bound on the original problem.

times, we incrementally convert the relaxed solution of Π〈Si = t〉 into a solution
of Π〈Si = t + 1〉 (or even directly for Π〈Si = t + Δ〉 with Δ ≥ 1). This recom-
putation is based on the observation that one can represent the transformation
of the relaxed solutions of Π〈Si = t〉 to that for Π〈Si = t+1〉 by a permutation
of unit-duration sections of activities as follows.

Definition 1. The permutation π = (α0, α1, ..., αK) transforms a preemptive
schedule by moving the first unit of each activity fragment αk to the place of the
first unit of α(k+1) mod (K+1). If the moved unit is placed next to a fragment of
the same activity then they are merged, otherwise a new fragment is created.

In Fig. 3, the corresponding permutations are displayed next to each relaxed solu-
tion. For example, moving from Π〈Si = 0〉 to Π〈Si = 1〉 requires the movements
of the first unit of the fragments as follows: α0 → α1, α1 → α2, α2 → ε, ε → α0.
The final move creates a new empty fragment, ε′′.

Lemma 1. The permutation from Π〈Si = t〉 to Π〈Si = t + 1〉 starts with
α0 = Ai, while its further elements can be computed as

αk+1 = the leftmost fragment with S(αk+1) > S(αk) and
w(αk+1)
p(αk+1)

<
w(αk)
p(αk)

.

The permutation ends when it reaches a fragment αK with r(αK) ≤ t. Recall that
the empty fragment at the end of the schedule always satisfies this condition, and
w(Ai) = ∞ is assumed.

Applying permutation π = (α0, ..., αK) increases the total mean busy time of
the preemptive schedule by

C(π) =
K−1∑

k=0

(S(αk+1) − S(αk))
w(αk)
p(αk)

− (S(αK) − S(α0))
w(αK)
p(αK)

,

where S(αk) denotes the start time of fragment αk. Thus, the cost of the new
relaxed solution is C

¯
〈Si = t + 1〉 = C

¯
〈Si = t〉 + C(π).

Transformations of consecutive relaxed solutions Π〈Si = t〉 to Π〈Si = t + 1〉
and Π〈Si = t+1〉 to Π〈Si = t+2〉 may be identical. Such is the case for i = 0 and
t = 0 in the sample problem shown in Fig. 3. Note that the Δ-fold application
of permutation π shifts fragments αk that satisfy S(αk+1) = S(αk)+p(αk) with
Δ units to the right, while it relocates a Δ-long portion of every other fragment

118 A. Kovács and J.C. Beck

={
0
,

1
}

" '1 2
'

0 5 10 15 20

320

 '

={
0
,

1
,

2
, }

0 1 2

0 5 10 15 20

3

={
0
,

1
,

2
, }

" '1 2

0 5 10 15 20

3

={
0
,

1
,

2
, '}

" '1 2

0 5 10 15 20

3

0

0

={
0
,

1
,

2
, '}

" '1

0 5 10 15 20

320

={
0
,

1
}

" '2
'

0 5 10 15 20

320

" '1
'

2
'

0 5 10 15 20

320

1
'

1

2
'

‹S
0
=4›

‹S
0
=1›

‹S
0
=2›

‹S
0
=3›

‹S
0
=5›

‹S
0
=6›

‹S0=0›

Fig. 3. Relaxed solutions of various restricted problems. The corresponding restrictions
are displayed on the left, the permutations applied are shown on the left of the schedule.

into newly created fragments. Thus, a permutation π on an optimal preemptive
schedule results in optimal relaxed solutions for subsequent problems exactly Δ
times, where Δ is the minimum of the following values:

(1) p(αk) of fragments αk ∈ π with S(α(k+1) mod (K+1)) 	= S(αk) + p(αk);
(2) r(αk) − S(α0) for fragments αk ∈ π with 1 ≤ k < K.

A Global Constraint for Total Weighted Completion Time 119

Condition (1) must be respected because the Δ-long, relocated portion of a frag-
ment cannot be longer than the fragment itself. On the other hand, violating
condition (2) would lead to sub-optimality: after the (r(αk∗) − S(α0))-fold ap-
plication of permutation π, it is a different permutation π′ = (α0, ..., αk∗) that
results in optimal solutions for the subsequent relaxed problems.

The lower bound cost for the new restricted problem can be calculated as
C
¯

〈Si = t + Δ〉 = C
¯

〈Si = t〉 + Δ · C(π), and linear interpolation can be applied
for determining C

¯
〈Si = t′〉 for t′ ∈ (t, t + Δ).

4.3 From a Lower Bound to Domain Filtering

If both C
¯

〈Si = t〉 > C̄ and C
¯

〈Si = t + Δ〉 > C̄ hold then the complete interval
[t, t+Δ] can be removed from the domain of Si. If only the first (second) condi-
tion holds, then the first (second), proportional part of the interval is removed.
No removal is made otherwise. The new lower bound on the total weighted com-
pletion time is computed as C

¯
= maxi mint C〈Si = t〉.

Thus, each recomputation step consist of determining the permutation to
apply and the corresponding Δ, followed by filtering the appropriate variable
domains. These steps are iterated until activity Ai reaches the end of its time
window, and the same procedure is repeated on each activity. The pseudo-code
of the proposed constraint propagation algorithm is presented in Fig. 4.

4.4 Computational Complexity

In order to determine the computational complexity of the propagation algo-
rithm, we first give a bound on the number of recomputation steps during the
filtering of the domain of one start time variable Si. We distinguish between two
kinds of recomputation steps, depending on whether condition (1) or condition
(2) bounds Δ, and call these (1)-type and (2)-type steps, respectively. Recom-
putation steps where (1) and (2) are equally bounding are considered to be of
the (1)-type.

Now, let us define the number of inversions I(σ) as the number of fragment
pairs (α1, α2) in the preemptive schedule σ such that S(Ai) ≤ S(α1) < S(α2) and
w(α1)/p(α1) < w(α2)/p(α2). Since there are at most 2n fragments in σ, I(σ) is
at most O(n2). Observe that I(σ) is strictly decreased by (1)-type recomputation
steps, while it is not affected by (2)-type steps. Therefore, the number of (1)-type
steps is at most O(n2), while the number of (2)-type steps is bounded by the
number of different activity release times, which is not greater than n.

Thus, the complete run of the constraint propagation algorithm takes at most
O(n4) time: for each of the n activities, there are at worst O(n2) recomputation
steps and each step is carried out in at worst O(n) time.

4.5 Implementation Details

While the pseudo-code depicted in Fig. 4 captures the underlying ideas of the
proposed propagation algorithm, its performance can be increased in various

120 A. Kovács and J.C. Beck

PROCEDURE RecomputeSchedule(σ - schedule, Ai - activity, t - time)
LET permutation π = (Ai)
WHILE r(last(π)) > t OR size(π) = 1

α := leftmost fragment in σ fragments with S(α) > S(last(π))

and w(α)
p(α) < w(last(π))

p(last(π))

Append α to π
LET Δ := min(min(p(αk) | αk ∈ π : S(αk+1 mod K+1) �= S(αk) + p(αk)),

min(r(αk) − S(α0) | αk ∈ π, 1 ≤ k < K))
σ′ := Schedule obtained by performing πΔ on σ
RETURN 〈σ′, Δ〉

PROCEDURE Propagate()
FORALL activity Ai

LET t := ri

σt := schedule computed by the lower bounding procedure for Π〈Si = t〉
WHILE t < S̄i

〈σt+Δ, Δ〉 := RecomputeSchedule(σ, Ai, t)
IF C

¯
〈Si = t〉 > C̄ and C

¯
〈Si = t + Δ〉 > C̄ THEN

Remove [t, t + Δ] from domain(Si)
ELSE IF C

¯
〈Si = t〉 > C̄ THEN

Remove [t, t + �(Δ C̄−C
¯

〈Si=t〉
C
¯

〈Si=t+Δ〉−C
¯

〈Si=t〉� − 1] from domain(Si)

ELSE IF C
¯

〈Si = t + Δ〉 > C̄ THEN

Remove [t + 	Δ C̄−C
¯

〈Si=t〉
C
¯

〈Si=t+Δ〉−C
¯

〈Si=t〉
 + 1, t + Δ] from domain(Si)

t := t + Δ
C ≥ maxi mint C〈Si = t〉

Fig. 4. Pseudo-code of the constraint propagation algorithm

ways. We have improved the average complexity of our implementation of the
algorithm with the following changes:

– Common branching strategies bind activity start times in a chronological
order, which results in a bound head of the schedule. This bound head is
ignored when building the relaxed solutions, only its cost is taken into ac-
count;

– Relaxed solutions are saved during each run of the propagator; filtering the
domain of Si is attempted again only after S

¯ j , j 	= i have increased, or C̄
decreased sufficiently to modify the relaxed solutions.

5 Computational Experiments

We ran computational experiments to measure the efficiency of the proposed
propagation algorithm on the single-machine total weighted completion time
problem with release times. The propagator has been implemented in C++ and
embedded it into ILOG Solver and Scheduler versions 6.1. For propagating the

A Global Constraint for Total Weighted Completion Time 121

resource constraint, we used the edge-finding algorithm. We applied an adapted
version of the SetTimes branching heuristic: in each search node from the set of
not yet scheduled (and not postponed) activities, the heuristic selects the activity
that has the smallest earliest start time (EST) and then breaks ties by choosing
the activity with the highest w/p ratio. Two branches are created according to
whether the start time of this activity is bound to its EST or it is postponed.

We compared the performance of three different models. The first used the
standard weighted sum constraint for propagating the optimization criterion
(WS). The second calculated the lower bound presented in Section 4.1 (WS+LB)
at each node and used it for bounding. The third model made use of the proposed
COMPLETION constraint.

These algorithms were tested on benchmark instances from the online repos-
itory [16]. The same instances or the some problem generation method have
been used in various previous works [3,6,13,17]. The repository contains 10
single-machine problem instances for each combination of parameters n and
R, where n denotes the number of activities and takes values between 20 and
200 in increments of 10, while R is the relative range of the release time,
chosen from {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0}. Activity durations are
randomly chosen from U [1, 100], weights from U [1, 10], and release times from
U [0, 50.5nR], where U [a, b] denotes the integer uniform distribution over inter-
val [a, b]. Out of these 1900 instances in total, we ran experiments on the 300
instances with n ≤ 70 and every second value of parameter R. The experiments
were run on a 1.86 GHz Pentium M computer with 1 GB of RAM, with a time
limit of 120 seconds imposed.

The experimental results are presented in Table 1, where each row contains
combined results for the 10 instances with the given number of activities n and
release time range R. For each of the three models, the table displays the number
of the instances that could be solved to optimality (column Solved), the average
number of search nodes (Nodes), and average search time in seconds (Time). The
average is computed only on the instances that the algorithm solved. From these
results we can conclude that the COMPLETION constraint adds significant
pruning strength to the constraint-based approach. This pruning not only paid
off in the means of the number of search nodes, but also decreased solution time
on every instance, compared to both other models. While the classical WS model
fails on some of the 20-activity instances, the COMPLETION constraint enabled
us to solve – with one exception – all problems with at most 40 activities, and
also performed well on the 50-activity instances.

The results also illustrate that instances with release time range R ∈ {0.6, 1.0}
are significantly more complicated for models WS+LB and COMPLETION than
other instances. This is explained by the fact that with R
 1, activities in the
second half of the schedule can simply be ordered by non-increasing wi/pi. On
this section of the schedule, the lower bound is exact and our propagator achieves
completeness. On the other hand, R � 1 leads to problems where only a few
activities can be chosen for scheduling at any point in time, which makes the
instance easily solvable as well.

122 A. Kovács and J.C. Beck

Table 1. Experimental results: number of instances solved, average number of search
nodes and average search time for the different versions of the branch and bound. Dash
‘-’ means that none of the instances could be solved within 120 CPU seconds.

n R WS WS+LB COMPLETION
Solved Nodes Time Solved Nodes Time Solved Nodes Time

20 20 - - - 10 591 0.00 10 46 0.00
60 2 1842024 62.50 10 1872 0.00 10 95 0.00

100 10 114359 3.60 10 1756 0.10 10 109 0.00
150 10 2518 0.00 10 223 0.00 10 67 0.00
200 10 140 0.00 10 102 0.00 10 51 0.00

30 20 - - - 10 1718 0.10 10 114 0.00
60 - - - 10 20674 2.90 10 417 0.00

100 5 845422 58.60 9 113523 17.00 10 7046 2.90
150 10 21555 1.30 10 1912 0.10 10 189 0.00
200 10 2633 0.10 10 857 0.00 10 159 0.00

40 20 - - - 10 8434 1.30 10 241 0.00
60 - - - 8 290209 57.12 9 4815 4.77

100 2 164455 29.00 4 55760 12.00 10 27366 15.60
150 10 40160 2.80 10 8943 1.30 10 592 0.20
200 10 60602 3.70 10 3685 0.20 10 374 0.00

50 20 - - - 8 89148 22.75 10 1557 2.30
60 - - - - - - 8 31486 55.25

100 - - - - - - 2 26807 41.00
150 3 92954 8.33 7 113198 26.71 10 12180 15.10
200 8 36056 3.25 9 6898 1.22 10 1498 0.80

60 20 - - - 3 161594 49.66 10 16159 33.20
60 - - - - - - - -

100 - - - - - - - -
150 - - - 4 194053 60.25 8 43353 32.75
200 4 120345 12.75 9 48066 11.55 10 5290 4.30

70 20 - - - 2 72540 30.00 6 2591 10.83
60 - - - - - - - -

100 - - - - - - 1 12125 46.00
150 - - - 2 184557 64.50 3 8940 14.33
200 4 228762 43.75 7 108701 34.14 9 14448 12.22

Our goal in this work is to develop a widely applicable constraint rather than
to solve the single machine weighted completion time problem. However, it is
instructive to compare these results directly against state-of-the-art, dedicated
techniques for solving the single machine problem. Our algorithms comparable
favorably to existing LP-based methods [3] that are able to solve instances with
at most 30–35 activities, and earlier branch-and-bound methods [6], which solve
problems with up to 40–50 activities. On the other hand, our approach is out-
performed by two different, recent solution methods. One is a branch-and-bound
algorithm combined with powerful dominance rules, constraint propagation, and
no-good recording by Jouglet et al. [13], which has originally been developed
for solving the more general total weighted tardiness problem. The other is a

A Global Constraint for Total Weighted Completion Time 123

dynamic programming approach enhanced with dominance rules and constraint
propagation by Pan and Shi [17]. These two approaches are able to solve in-
stances with up to 100 and 200 activities, respectively. It should be noted that
a part of the contributions of these works, especially the strong dominance rules
are orthogonal and complementary to the COMPLETION constraint. We expect
that combining such approaches with the COMPLETION constraint would lead
to further performance improvements.

6 Extensions to Other Scheduling Models

Our future work will focus on the application and extension of these results to
more complex scheduling models and other application domains, such as con-
straining the location of the center of gravity in container loading. Below we
sketch two possible extensions.

6.1 Extension to Cumulative Resources

To extend the COMPLETION constraint to cumulative resources (i.e., resources
with a non-unary capacity), we define a variation:

COMPLETIONm([S1, ..., Sn], [p1, ..., pn], [�1, ..., �n], [w1, ..., wn], R, C)

As with the unary case, the scheduling problem involves n activities Ai to
be executed without preemption on a single, cumulative resource. Each activity
is characterized by its processing time pi, a non-negative weight factor wi, and
its resource requirement �i. R represents the capacity of the resource. The total
weighted completion time of the activities will be denoted by C. We assume that
�i and R are constants, however our approach is easily adapted by reasoning with
the lower bound of �i and the upper bound of R.

As above, we use the mean busy time relaxation to obtain a lower bound
on C. A preemptive schedule is prepared chronologically, by choosing at each
decision point the k available activities that have the highest wi/pi ratio, so
that

∑k−1
i=1 �i < R ≤

∑k
i=1 �i holds. A schedule fragment is created in which

activities A1, ..., Ak−1 are processed at rates �1, ..., �k−1, and Ak is processed
at rate R −

∑k−1
i=1 �i. This fragment lasts until the next decision point, which

corresponds to a release time, an activity completion, or a point in time where
the remaining volume of an activity decreases below its previous processing rate.
The complexity of the lower bounding algorithm is O(n2).

However, the cumulative extension of the COMPLETION constraint is more
challenging than the unary version, because recomputing the mean busy time
relaxation for each relevant value of the start time variables imposes an extensive
computational burden in the cumulative case. We are currently investigating
ways of partially relaxing the release times or resource requirements in order to
facilitate quicker computations, at the price of reduced pruning strength.

124 A. Kovács and J.C. Beck

6.2 Extension to Multiple Resource Problems

In a simple multiple resource problem, each activity requires one or more re-
sources and has a weight. The obvious approach therefore is simply to have one
COMPLETION constraint on each resource and represent the sum of comple-
tion times criterion as the sum of the sum of completion times on each resource,
correcting for activities that require more than one resource.

More interesting is the extension to multiple resource project scheduling prob-
lems with more complex temporal relations amongst activities. For example, in
a job shop scheduling problem, a job is made up of a sequence of activities linked
by precedence constraints. The standard weighted completion model associates
the weight and the completion time of a job to the final activity in the job, as-
signing zero weight to all other activities. We propose a more generic approach
that allows us to use the COMPLETION constraint as defined above, and leads
to more efficient pruning.

In our approach, activities can be assigned arbitrary weights, under the con-
dition that the sum of activity weights within a job must equal the weight of the
job. One COMPLETION constraint is placed on each resource that processes
weighted activities, and the overall cost of the solution is the sum of total
weighted completion times on each resource. The difference between activity and
job completion times is compensated by a bias computed as the scalar product of
activity weights and the temporal distance of activity and job completions. This
way, weighted activities contribute to the overall cost of the solution both directly
by their weighted completion time, and indirectly by delaying other weighted ac-
tivities that have a lower wi/pi ratio. On the other hand, zero-weight activities
do not affect the cost in either way, unless they satisfy S̄i < S

¯ i+pi, in which case
they must use the resource in the interval [S̄i, S

¯ i + pi]. This can be represented
by a fragment α of appropriate duration, infinite weight, and r(α) = S̄i.

Intuitively, the above considerations imply that the relaxed cost on each re-
source increases super-linearly with the total activity weight on the resource.
Therefore, the strongest pruning is achieved when weighted activities are con-
centrated on a small number of resources. Such a distribution of the weights
can be attained by a preprocessing procedure to assign weights. The procedure
selects the most utilized resource R1 and the set of activities A1 that require R1,
but such that none of their job-successors require R1. To each activity in A1,
we assign the weight of the corresponding job. The procedure continues with re-
peating these steps on the second, third, etc., most utilized resource while there
are jobs not yet covered. Finally, all the remaining activities receive zero weights.

This approach does the opposite of what the classical weight-on-finals ap-
proach does in the case where job-final activities are uniformly spread over the
resources. The superiority of the proposed approach can be best demonstrated
on such problems: in the extreme, where there is at most one job-final activ-
ity on each resource, the classical approach results in no propagation at all. In
contrast, the proposed method can still tighten variable domains by considering
various weighted activities on the same resource. Our future work will focus on

A Global Constraint for Total Weighted Completion Time 125

elaborating the details of the assignment of weights to activities in the above
sketched framework.

7 Conclusions

In this paper, we proposed an algorithm for propagating the COMPLETION
constraint, which represents the sum of weighted completion times on a sin-
gle unary capacity resource. The propagation of the constraint exploits a lower
bound arising from the optimal solution to the preemptive mean busy time
scheduling problem which can be found in polynomial time. Using this lower
bound, we propose an algorithm that updates the lower bound on the cost by
incrementally recomputing the optimal preemptive mean busy time schedule for
a carefully structured subset of the possible start times of each activity. The
time complexity of this algorithm is O(n4).

Empirical results on a set of single resource, minimum weighted completion
time benchmarks in the literature show that the COMPLETION constraint sig-
nificantly improves the performance of constraint-based approaches, which is a
considerable result in the field of scheduling with“sum type” objective functions,
an area where constraint programming has not yet been especially strong.

Our future work will examine the extension of this approach to cumulative
resources, scheduling problems with multiple machines such as the job shop
scheduling problem, and other problems with “sum type” cost constraints.

Acknowledgment

A part of this work was carried out while A. Kovács was with the Cork Con-
straint Computation Centre, supported by an ERCIM fellowship. The authors
acknowledge the support of the EU FP6 Net-WMS project and the Canadian
Natural Sciences and Engineering Research Council, and ILOG, S.A.

References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, M. Sviridenko. Approximation Schemes for
Minimizing Average Weighted Completion Time with Release Dates. In Proc. of
the 40th IEEE Symposium on Foundations of Computer Science, pp. 32–44, 1999.

2. C. Akkan, S. Karabatı. The Two-machine Flowshop Total Completion Time Prob-
lem: Improved Lower Bounds and a Branch-and-bound Algorithm. European Jour-
nal of Operational Research 159:420–429, 2004.

3. J.M. van den Akker, C.A.J. Hurkens, M.W.P. Savelsbergh. Time-indexed Formu-
lations for Machine Scheduling Problems: Column Generation. INFORMS Journal
on Computing 12:111–124, 2000.

4. Ph. Baptiste, J. Carlier, A. Jouglet. A Branch-and-Bound Procedure to Minimize
Total Tardiness on One Machine with Arbitrary Release Dates. European Journal
of Operational Research 158:595–608, 2004.

126 A. Kovács and J.C. Beck

5. Ph. Baptiste, L. Peridy, E. Pinson. A Branch and Bound to Mininimze the Number
of Late Jobs on a Single Machine with Release Time Constraints. European Journal
of Operational Research 144(1):1–11, 2003.

6. H. Belouadah, M.E. Posner, C.N. Potts. Scheduling with Release Dates on a Single
Machine to Minimize Total Weighted Completion Time. Discrete Applied Mathe-
matics 36:213–231, 1992.

7. B. Chen, C.N. Potts, G.J. Woeginger. A Review of Machine Scheduling: Complex-
ity, Algorithms and Approximation. In: Handbook of Combinatorial Optimization,
Vol. 3, pp. 21–169, Kluwer, 1998.

8. F. Della Croce, M. Ghirardi, R. Tadei. An Improved Branch-and-bound Algorithm
for the Two Machine Total Completion Time Flow Shop Problem. European Jour-
nal of Operational Research 139:293–301, 2002.

9. M. Dyer, L.A. Wolsey. Formulating the Single Machine Sequencing Problem with
Release Dates as Mixed Integer Program. Discrete Applied Mathematics 26:255–
270, 1990.

10. F. Focacci, A. Lodi, M. Milano. Embedding Relaxations in Global Constraints
for Solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence
34(4):291–311, 2002.

11. F. Focacci, A. Lodi, M. Milano. Optimization-Oriented Global Constraints. Con-
straints 7(3-4):351–365, 2002.

12. M.X. Goemans, M. Queyranne, A.S. Schulz, M. Skutella, Y. Wang. Single Machine
Scheduling with Release Dates. SIAM Journal on Discrete Mathematics 15(2):165–
192, 2002.

13. A. Jouglet, Ph. Baptiste, J. Carlier. Branch-and-Bound Algorithms for Total
Weighted Tardiness. In: Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis, Chapter 13, Chapman & Hall / CRC, 2004.

14. A. Kéri, T. Kis. Primal-dual Combined with Constraint Propagation for Solving
RCPSPWET. In Proc. of the 2nd Multidisciplinary International Conference on
Scheduling: Theory and Applications, pp. 748–751, 2005.

15. R. Nessah, F. Yalaoui, C. Chu. A Branch-and-bound Algorithm to Minimize Total
Weighted Completion Time on Identical Parallel Machines with Job Release Dates.
Computers and Operations Research, in print.

16. Y. Pan. Test Instances for the Dynamic Single-machine Sequencing
Problem to Minimize Total Weighted Completion Time. Available at
http://www.cs.wisc.edu/~yunpeng/test/sm/dwct/instances.htm

17. Y. Pan, L. Shi. New Hybrid Optimization Algorithms for Machine Scheduling
Problems. IEEE Transactions on Automation Science and Engineering, in print.

18. A.S. Schulz. Scheduling to Minimize Total Weighted Completion Time: Perfor-
mance Guarantees of LP-Based Heuristics and Lower Bounds. Proc. of the 5th
Int. Conf. on Integer Programming and Combinatorial Optimization, pp. 301–315,
1996.

Computing Tight Time Windows for

RCPSPWET with the Primal-Dual Method�

András Kéri1 and Tamás Kis2,��

1 Chair of Business Administration, Transport and Logistics, Technical University of
Dresden, Andreas Schubert str. 23, D-01069 Dresden, Germany

andras.keri@mailbox.tu-dresden.de
2 Computer and Automation Institute, Kende str. 13-17, H-1111 Budapest, Hungary

tamas.kis@sztaki.hu

Abstract. In this paper we combine OR and CP techniques to solve
the Resource-Constrained Project Scheduling Problem with Earliness-
Tardiness costs and general temporal constraints. Namely, we modify
the Primal-Dual algorithm for solving the maximum-cost flow problem
in a network to deduce tight time windows for activities with respect to
a finite upper bound on the optimal objective function value. We com-
pare our method to the only exact method in the literature. Our results
show that time window computations and additional domain filtering
techniques may improve the performance of tree-search based methods.

1 Introduction

Suppose we have n activities V = {1, . . . , n} with given processing time pj ≥ 0,
due-date dj ≥ 0, unit earliness cost ej ≥ 0 and unit tardiness cost tj ≥ 0
for each j ∈ V . Furthermore, there is a set A ⊂ V × V of pairwise temporal
relations between the activities with time lags δi,j , (i, j) ∈ A, where the δi,j

can be 0, positive or negative, which enables the modeling of minimum and
maximum time lags. In addition, there is a finite set R of resources to carry out
the activities. Each resource k ∈ R has a finite capacity bk > 0, and for each
activity i ∈ V , its resource requirements are given by non-negative numbers ri,k,
k ∈ R. All the problem data are integral.

We have to determine the non-negative start time Sj of each activity j sub-
ject to (i) temporal constraints: Sj − Si ≥ δi,j , ∀(i, j) ∈ A, and (ii) resource
constraints:

∑
i ∈A(S,t) ri,k ≤ bk, for each k ∈ R and any time point t, where

A(S, t) denotes the set of those activities that are being executed at time point
t, i.e., A(S, t) = {i ∈ V | Si ≤ t < Si + pi}. We say that activity j is early if
Sj+pj < dj and tardy if Sj+pj > dj . The cost incurred when activity j is early is
ej ·max{0, −Sj +dj −pj}, while the cost of being late is tj ·max{0, Sj −dj +pj}.

� The research of Tamás Kis has been supported by the János Bolyai Research Grant
No. BO/00380/05 and by the NKFP Grant No. 2/010/2004 (VITAL).

�� Corresponding author.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 127–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

andras.keri@mailbox.tu-dresden.de
tamas.kis@sztaki.hu

128 A. Kéri and T. Kis

The objective is to minimize the total earliness-tardiness cost over all activi-
ties. To summarize, the Resource-Constrained Project Scheduling Problem with
Earliness-Tardiness costs (RCPSPWET) studied in this paper can be stated as
follows:

min
∑

j∈V

(ej · max{0, −Sj + dj − pj} + tj · max{0, Sj − dj + pj})

subject to the constraints (i) and (ii). This problem is NP-hard in general and
becomes polynomial if there are no resource constraints [21].

The objective function is non-regular , as it is not monotone in the starting
(or completion) times of the activities. A classification of non-regular objective
functions can be found in [15].

We are aware of only one exact method for RCPSPWET [18] with general
temporal constraints, which is nevertheless similar to that of [14] for the max-
imum net present value problem. In fact, almost the same branch and bound
procedure can be applied to the two different problems [15]. The lower/upper
bounds can be computed by the steepest ascent method [18], [19]. In addition,
the procedure makes various deductions to cut off a large part of the search
tree. This includes the subset dominance rule and inference of new arcs between
pairs of resource-disjunct activities. The special case with precedence constraints
only (no maximal time lags) has been studied by Vanhoucke et al. [20] and then
by Kéri and Kis [9], [10]. In particular, Kéri and Kis has proposed a fast ap-
proximation method for determining approximate time windows for activities,
but that method seems to work only when there are no directed cycles in the
precedence graph. Notice that when maximum time lags are allowed, then cy-
cles of non-positive lengths are allowed. For the job-shop special case Beck and
Refalo [3] have proposed various hybrid solution techniques. Their procedures
exploit that there are only end-to-start precedence constraints and that all re-
sources are of unit capacity. Some of their procedures (CRS family) also make
use of the fact that only the last activities of the jobs affect the cost function
directly. From a different perspective, the resource-relaxed problem is a special
case of the Simple Temporal Problem with Preferences , proposed by Khatib et
al. [11]. In that problem, between two events Xi and Xj there can be hard mini-
mum and maximum time lags, or a preference function F(Xi,Xj)(t) indicating the
preference of scheduling Xj t time units after Xi. For piecewise linear concave
preference functions, a solution which maximizes the sum of preferences can be
found by solving a linear program as observed by Morris et al. [13]. Kumar [12]
has recently noticed that the linear program is equivalent to a minimum cost
flow problem in an appropriate network.

Our main contribution is an algorithm for computing tight time windows for
the activities using only the best known objective function value. Our method
is based on the Primal-Dual method for computing a maximum-cost flow in a
network. Time windows are then used for applying additional domain filtering
techniques, published in the literature, in order to narrow further the time win-
dows of activities. Narrower time windows permit, on the one hand, to infer

Time Window Computations for RCPSPWET 129

more arcs between resource-disjunct activities, and on the other hand to com-
pute stronger lower bounds. As a result, in many cases it suffices to explore
a smaller portion of the search tree to find an optimal solution and prove its
optimality.

The structure of the paper is as follows: In Sections 2 we summarize known
facts about the resource-relaxed problem. In Section 3 we describe the network
computations and in particular we provide the method for computing tight time
windows. Section 4 sketches the branch and bound procedure that we apply.
We do not give all details as these are well documented in the literature. The
performance of our method is evaluated in Section 5.

2 Preliminaries

Below we formalize the resource-relaxed problem as a linear program and recog-
nize that it is dual to a maximum cost flow problem. The same conclusion has
been reached in [21]. We pay special attention to the modeling of time windows.

We introduce two dummy activities, 0 and n+1, and let V + = V ∪{0, n+1}.
Let A+ contain all the temporal constraints from A and the new constraints (0, j)
with δ0,j = 0, (j, 0) with δj,0 = −∞, (j, n+1) with δj,n+1 = −dj+pj and (n+1, j)
with δn+1,j = dj−pj for j ∈ V . Let A− = A+\{(j, n+1), (n+1, j) | j ∈ V ∪{0}}.
Moreover, let e0 = t0 = ∞ and d0 = 0. After these preparations, the linear
program modeling the resource-relaxed problem is:

v(S) = min
∑

j∈V ∪{0}
ejwn+1,j + tjwj,n+1 (1)

subject to

Sj − Si ≥ δi,j , ∀(i, j) ∈ A−, (2)
Sj − Sn+1 + wn+1,j ≥ δn+1,j, ∀j ∈ V ∪ {0}, (3)
Sn+1 − Sj + wj,n+1 ≥ δj,n+1, ∀j ∈ V ∪ {0}, (4)

wn+1,j , wj,n+1 ≥ 0, ∀j ∈ V, (5)
Sn+1 = 0. (6)

Inequalities (2) represent the temporal constraints, while (3) and (4) express the
earliness and tardiness of activity j, respectively. Since e0 = t0 = ∞ and d0 = 0,
in any optimal solution S0 = 0. We deliberately do not set S0 to 0 explicitly to
facilitate fast re-optimization as explained in Section 3.1. Then the dual problem
is:

max
∑

(i,j)∈A+

δi,jXi,j (7)

subject to
∑

(j,i)∈A+

Xj,i −
∑

(i,j)∈A+

Xi,j = 0, ∀i ∈ V +, (8)

130 A. Kéri and T. Kis

Xn+1,j ≤ ej ∀j ∈ V ∪ {0}, (9)
Xj,n+1 ≤ tj ∀j ∈ V ∪ {0}, (10)

Xi,j ≥ 0, ∀(i, j) ∈ A+. (11)

Clearly, this is a maximum cost flow problem in the network N(δ) = (V +, A+, δ).
We will refer to (7)-(11) as the primal problem and to (1)-(6) as the dual problem.
It is known that for non-negative ej and tj values, the optimal wj,n+1 and
wn+1,j values are uniquely determined by the optimal S values by the formulas
wn+1,j = max{0, −Sj + dj − pj} and wj,n+1 = max{0, Sj − dj + pj}. Therefore,
the optimal dual solution can be characterized by the values of the Sj variables.

We recapitulate the complementary slackness optimality conditions for later
reference. The reduced cost of arc (i, j) ∈ A+ is defined as rci,j(S) = δi,j+Si−Sj .
Let ui,j denote the upper bound on arc (i, j). Notice that ui,j = ∞ except on
the arcs (n + 1, j) and (j, n + 1), j ∈ V . It is known that a pair of primal and
dual optimal solutions must satisfy the conditions:

If rci,j(S) < 0, then Xi,j = 0.
If rci,j(S) > 0, then Xi,j = ui,j.
If 0 < Xi,j < ui,j , then rci,j(S) = 0.

With respect to any X̄ ∈ R
|A+|, define the excess of node i as ex(i) =

∑
(j,i)∈A+

X̄j,i −
∑

(i,j)∈A+ X̄i,j . Node i is a source node if ex(i) > 0, and it is a sink node
if ex(i) < 0.

3 Network Computations

If we relax the resource constraints, we are left with a much easier problem, which
can be solved in polynomial time [21]. Various methods have been suggested in
the literature for finding the optimal solution of the resource-relaxed problem
quickly [18], [20]. However, in branch and bound based procedures only a few new
arcs are introduced when generating child nodes, and we can use the optimal
solution of the parent node to initialize the search in a child node. This idea
occurs e.g., in [14] for speeding up the steepest ascent method applied to the
net present value problem. We will show how to recompute the optimal solutions
using the primal-dual maximum cost flow algorithm. On the other hand, when an
upper bound on the optimum has been found, we also wish to compute tight time
windows for activities, that is, the earliest and latest time points beyond which
it is no use to execute the activity because the objective function is guaranteed
to be greater than the known upper bound.

3.1 Updating the Primal and Dual Optimal Solutions

Branch and bound algorithms explore a tree defined by a branching scheme
(cf. Section 4). In each node visited by the algorithm a lower bound is computed
with respect to the constraints of the original problem and additional constraints

Time Window Computations for RCPSPWET 131

determined during the search. Let N(E, δ) = (V +, A+ ∪ E, δ) be the network
associated with a tree-node q, where E contains those arcs added by the branch
and bound algorithm along the path leading to the node (Section 4), and δ :
A+ → Z defines the arc lengths. We generate child nodes by adding new temporal
constraints to the network, that is, we obtain each child node by adding a set of
arcs E′ along with their lengths to N(E, δ). Since we know the lower bound in
node q, the optimal primal, X∗, and dual, S∗, solutions are available and can be
used to speed up the computation of the lower bound in each child node. Namely,
if E′ is the set of arcs added to N(E, δ) with lengths δ′, first we update S∗ by
these arcs to obtain a dual feasible solution S for N(E′′, δ′′), where E′′ = E ∪E′

and δ′′i,j := δi,j for each (i, j) ∈ (E ∪ A+) \ E′, δ′′i,j := max{δi,j, δ
′
i,j} for each

(i, j) ∈ E′ ∩ (E ∪A+) and δ′′i,j := δ′i,j for each (i, j) ∈ E′ \ (E ∪A+). To this end,
let S := S∗ and we check each arc (i, j) ∈ A+ ∪ E ∪ E′ wether Sj − Si ≥ δ′′i,j . If
not, then update Sj := Si +δ′′i,j . We repeat this procedure until no more changes
occur or a positive cycle is found in which case the dual problem has no feasible
solution. For details, see [1].

With a feasible dual solution, we can update the primal solution to ensure that
the complementary slackness conditions are satisfied. Namely, if rci,j(S) < 0 then
let Xi,j = 0; if rci,j(S) > 0 then let Xi,j = ui,j; while if rci,j(S) = 0, Xi,j = X∗

i,j .
Clearly, X can be computed in linear time in the size of N(E′′, δ′′).

Finally, we can apply any variant of the primal-dual maximum cost flow al-
gorithm to X and S to obtain a pair of optimal solutions for N(E′′, δ′′).

In practice this method is very efficient as E′ usually contains only a few arcs
and therefore only a small fraction of the distances Si − Sj , (i, j) ∈ A+ ∪ E ∪ E′

change. Therefore, X and X∗ usually differ only on a few arcs (cf. definition of
rci,j(S)).

3.2 Tightening the Domains of Variables

Suppose the algorithm for solving RCPSPWET has found one ore more feasible
solutions (respecting constraints (i) and (ii)). Therefore, a finite upper bound
UB is available on the value of the optimal solution. The domain of activity
j ∈ V in node q of the search tree is the time interval [δ0,j(q), −δj,0(q)] in which
Sj may take a value (see the next section). However, if, say, tj > 0, then possi-
bly δ0,j(q) < Sj or Sj < −δj,0(q) in any feasible solution with objective function
value smaller than UB and reachable from node q. We propose a simple proce-
dure for tightening the domains of activities using only the temporal constraints
and the upper bound UB .

Consider the network N(E, δ) = (V +, A+ ∪ E, δ) associated with a node of
the branch and bound tree. For each activity j, define the function

fj(s) = min{v(S) | Sj = s and S is dual feasible for N(E, δ)}.

Proposition 1. fj(s) is convex on the interval [δ0,j, −δj,0].

With these functions, define the quantities

Smin
j = min{s ∈ Z | s ≥ δ0,j and fj(s) ≤ UB}

132 A. Kéri and T. Kis

and
Smax

j = max{s ∈ Z | s ≤ −δj,0, and fj(s) ≤ UB},

where UB is the best known upper bound. We discuss the computation of Smax
j

in detail, the method for Smin
j being similar. After the computations we can set

δ0,j = Smin
j and δj,0 = −Smax

j .
Let X∗ and S∗ constitute a pair of primal and dual optimal solutions for

N(E, δ). We may assume that −δj,0 ∈ [δ0,j , ∞], otherwise the dual problem is
infeasible. If the common primal and dual objective function value is greater
than or equal to UB , then the dual feasible solutions of the maximum cost flow
problem with respect to N(E, δ) cannot contain a better solution than the one
with cost UB . In this case there is no use to compute time windows. So assume
that the optimal objective function value is smaller than UB .

Algorithm 1. Computation of Smax
j (input: N(E, δ),UB ; output: Smax

j)

1: Let δ0
0,j = −δj,0, X0

0,j = ∞, δ0
i,j = δi,j and X0

i,j = X∗
i,j for (i, j) ∈ A+ \ {(0, j)}.

2: Apply the Primal-Dual Maximum Cost Flow algorithm (sketched below) to N(E, δ)
starting from X0, and S∗. Stop the algorithm when either the solution becomes
primal feasible or the dual objective function value becomes greater than UB after
the change of the dual variables. Upon termination, let X̄ and S̄ denote the values
of the primal and the dual variables, respectively.

3: Let S′ denote the value of the dual variables before the last increase. If v(S̄) −
UB > 0, λ = (v(S̄) − UB)/(v(S̄) − v(S′)), otherwise let λ = 0. Then, Smax

j :=
�λS′

j + (1 − λ)Sj�.

Algorithm 1 for computing Smax
j consists of three main steps. In the first

step δ0,j is increased to −δj,0. With this modified δ0,j value, rc0,j(S∗) > 0
unless S∗

j = −δ0,j in which case there is nothing to compute. To maintain the
complementary slackness optimality conditions, X0

0,j is set to its upper bound.
This way 0 becomes a sink node and j becomes a source node. All other nodes
have zero excess.

The Primal-Dual Maximum Cost Flow algorithm applied in the second step
of the algorithm alternates between sending flow from a source node to a sink
node, and increasing the value of a subset W ⊂ V + of dual variables taking into
account the reduced costs. Namely, it tries to send flow from a source node to
a sink node through directed paths in the residual network using only arcs with
zero reduced costs. If no more flow can be sent from a source to a sink node,
then there is a set of nodes W reachable from a source node through these paths,
but W does not contain a sink node. In our case the source node is always j and
the sink node is always 0. Then the dual variables corresponding to the nodes
in W are increased by the same amount ε such that complementary slackness is
maintained. Namely, ε = min{ε1, ε2}, where ε1 = min{rci,j(S) | (i, j) ∈ A+, i ∈
V + \ W, j ∈ W, rci,j(S) > 0} and ε2 = min{−rci,j(S) | (i, j) ∈ A+, i ∈ W, j ∈
V + \ W, rci,j(S) < 0}.

In the third step, if v(S̄) ≤ UB , then Smax
j = S̄j . Otherwise, when v(S′) <

UB < v(S̄), the algorithm computes the point between S′
j and S̄j such that

Time Window Computations for RCPSPWET 133

the dual objective reaches UB . To make this more precise, first notice that the
choice of λ ensures λv(S′) + (1 − λ)v(S̄) = UB . Moreover, we have:

Lemma 1. The dual objective function value satisfies v(λS′ + (1 − λ)S) =
λv(S′) + (1 − λ)v(S̄).

Proof. If v(S̄) ≤ UB then λ = 0 and we are done. So assume v(S̄) > UB .
Let W be the set of nodes whose dual variable has been changed just before
the termination of the algorithm. Then node n + 1 /∈ W . This can be seen by
induction as we start out from an optimal solution S∗ in which rcn+1,0(S∗) = 0.
Therefore, if n+1 was reachable from node j on a path consisting of arcs with zero
reduced costs, node 0 would be reachable as well. Now, since n+1 /∈ W , the choice
of ε and the definition of the rcn+1,i(S) implies that ε ≤ min{di − pi − Si | i ∈
W and Si < di − pi}. Consequently, for i ∈ W with Si ≥ di − pi, increasing
Si by ε increases the dual objective function value by εti, and for i ∈ W with
Si < di − pi, increasing Si by ε decreases the dual objective function value by
εei. Therefore, the dual objective changes linearly when increasing the value of a
subset W of dual variables by the same amount of ε. Consequently, the objective
function value changes linearly during the last increase of the dual variables and
the statement follows. ��

We still have to show the following:

Lemma 2. v(λS′ + (1 − λ)S) equals the smallest dual objective function value
over all dual feasible solutions S̃ with S̃j ≥ λS′

j + (1 − λ)Sj.

Proof. Since the complementary slackness conditions are maintained by the
primal-dual maximum cost flow algorithm, if we let S = λS′+(1−λ)S, δ0,j = Sj ,
X0,j =

∑
(j,i)∈A+ X̄j,i−

∑
(i,j)∈A+\{(0,j)} X̄i,j , and Xa = X̄a for a ∈ A+\{(0, j)},

X and S will be primal and dual feasible with respect to N(E, δ), and sat-
isfy the complementary slackness conditions. Therefore, X and S constitute a
pair of primal and dual optimal solutions with value v(λS′ + (1 − λ)S) and
Sj = λS′

j + (1 − λ)Sj . ��

If λS′
j + (1 − λ)Sj is fractional, then clearly, we can round it down to obtain

Smax
j .
The algorithm performs at most n + |A+| dual changes, and between two

changes it solves a maximum flow problem with successive augmenting paths
(which is theoretically not efficient). Clearly, the maximum flow problem may
be solved by any polynomial time algorithm and thus the entire algorithm may
be implemented to run in polynomial time. However, in practice, our method
is quite efficient as there are only a few flow augmentations between any two
changes of dual variables. We illustrate all this by means of a small example:

Example 1. A simple AoN-network is depicted in Figure 1. For the sake of
simplicity we suppose that i) each arc is an end-to-start precedence relation
(δi,j = pi) and ii) the earliness and tardiness costs are equal for each ac-
tivity (ej = tj). The optimal solution (of the resource-relaxed problem) is

134 A. Kéri and T. Kis

pj

dj,ej=t j

3

1

15,10

3
32,3

2

10 20 30

UB

50

j

es 2 ls2

2

10

20,2

4
45,4

3

Fig. 1. Illustration of computing Smax
j

S∗ =< 12, 15, 30, 42 > with cost c = 10. Assume that we have an upper bound
UB = 60.

To compute Smax
2 , we start to shift activity 2 to the right. We can shift it

until S2 = 20, where arc (2, 3) becomes tight, thus ε = 5. The new schedule is
S1 =< 12, 20, 30, 42 >, the cost is c = 30. Since this is smaller than the upper
bound, we continue with shifting activities {2, 3}, until arc (3, 4) becomes tight
(S3 = 40). ε = 8, the schedule is S2 =< 12, 30, 40, 42 > with cost c = 70.
c > UB , so we can calculate Smax

2 from S1
2 and S2

2 . Regarding that the per-unit
tardiness cost of activities {2, 3} together is t2 + t3 = 5, we get that Smax

2 = 28,
and the corresponding schedule is < 12, 28, 38, 42 > with cost c = 60.

4 Exact Algorithm Based on Branch and Bound

A subset C of activities are in conflict, or C is a conflicting set , if there exists
k ∈ R with

∑
i∈C ri,k > bk. Two activities, i and j, are resource-disjunct if {i, j}

is a conflicting set. If A(S, t) is a conflicting set, then the inclusion-wise minimal
subsets B of A(S, t) such that A(S, t) \ B is non-conflicting are called minimal
delaying alternatives [5]. Algorithm 2 is an extension of Algorithm 3.5.1 of [15] for
project scheduling with general precedence relations and non-regular objective
functions (see also [6] and [14]). The extension consists of the application of
domain filtering techniques in lines (15)-(18).

In Algorithm 2, L is a list of nodes and S∗
best is the best resource feasible

solution found so far. At the beginning, L contains only the root node and S∗
best

is empty. The search proceeds in a depth-first manner by always choosing the
last node q appended to the end of L. Each node is processed only once. First

Time Window Computations for RCPSPWET 135

Algorithm 2. Branch-and-Bound (input: UB , output: S∗
best)

1: L := {r}, S∗
best := ∅

2: Compute all-pairs-longest-paths δ(r)
3: while L �= ∅ do
4: Remove the last node q from L
5: if S∗(q) is resource feasible then
6: if v(S∗(q)) < UB then
7: UB := v(S∗(q)), S∗

best := S∗(q)
8: end if
9: else

10: Determine the earliest time point t when A(S∗(q), t) is conflicting
11: K := ∅
12: for each minimal delaying alternative B ⊂ A(S∗(q), t) do
13: for all i ∈ A(S∗(q), t) \ B do
14: Generate node q′ from node q with additional temporal constraints (i, j)

with δi,j(q
′) = pi for each j ∈ B

15: if UB < ∞ then
16: Tighten the variable domains with Network Computations
17: Tighten the variable domains with Unit-Interval Tests and Edge-

Finding
18: end if
19: Compute all-pairs-longest-paths δ(q′)
20: Perform Immediate-Selection for resource-disjunct activities
21: Re-compute S∗(q′)
22: if node q′ is infeasible or dominated, or v(S∗(q′)) ≥ UB then
23: Delete node q′

24: else
25: K := K ∪ {q′}
26: end if
27: end for
28: end for
29: Append the nodes q′ ∈ K to L in non-increasing order of v(S∗(q′))
30: end if
31: end while

it is checked whether the solution associated with the node, S∗(q), is resource
feasible. If it is, the node will be fathomed. But before, it is checked whether S∗(q)
represents a better solution than S∗

best (line 6). If S∗(q) is not resource feasible,
then the algorithm finds the first time point t when A(S∗(q), t) is conflicting.
Then for each minimal delaying alternative with respect to A(S∗(q), t), a new
node q′ is generated (line 14) [8], [6]. If there is a feasible solution, i.e., UB < ∞,
we tighten the time windows of activities by the network computations described
in Section 3.2 and also by two well-known domain filtering techniques: the Unit-
Interval Tests and Edge-Finding (see [16], [2] and [7]), lines (15)-(18). All these
domain filtering techniques are invoked only once for each activity, and not
until a fixpoint is reached. We have found by experimentation that it does not
pay off repeating these computations until no more changes occur. Then we

136 A. Kéri and T. Kis

compute the longest paths between all pairs of activities in V ∪ {0} and store
it in the (n + 1) × (n + 1) matrix δ(q′). Using δ(q′), we perform immediate
selections between pairs of resource-disjunct activities. To this end, we apply
the techniques of [15], pages 53-57 (see also [14]) which extend those of [4] and
[6]. Notice that in the end of the computations, δ0,i(q′) equals the earliest start
time of activity i, while −δi,0(q′) is its latest start time. The node is infeasible
if δ0,i(q′) + δi,0(q′) > 0, or δi,i(q′) > 0 hold for any i ∈ V . The child node is
dropped if it is infeasible, or dominated by some node already explored in the
tree (we apply the subset dominance rule of [14] which is a strengthening of
that proposed in [6]), or its lower bound is not smaller than the current upper
bound (line 23). Those child nodes that are not deleted get appended to L in
non-increasing order of their lower bounds (line 29).

We apply Algorithm 2 in two phases. In the first phase, when no feasible
solution is known, we invoke the algorithm with UB = ∞ and stop it immediately
when it encounters the first resource and time feasible solution, or proves that
the problem is infeasible. If a feasible solution is found, we invoke Algorithm 2
the second time with UB equal to the value of the known feasible solution. Notice
that the domain filtering techniques in lines (15)-(18) become active only during
the second invocation.

5 Computational Results

To evaluate the performance of our algorithm, we used two groups of RCPSP/
max test instances, UBO20 and UBO50 generated by ProGen/max [17]. Since
these test instances were generated for the makespen objective, we complemented
each of them by due-date and per unit earliness and tardiness cost information.
Namely, for an instance with n activities we generated n random numbers chosen
uniformly from the interval [1, 1.5Cmax], where Cmax is the makespan of the
resource-relaxed problem. Then we sorted these numbers in ascending order and
assigned the i-th member of the sorted list to the i-th activity of the instance.
The per unit earliness and tardiness costs were chosen uniformly at random
from the interval [1, 100]. We implemented the complete algorithm in C++ . We
run the tests on a PC with 2.4 GHz Xeon CPU, using Windows 2000 operating
system. To make a fair comparison with the method of Schwindt [18], we also
solved all instances with his program which he kindly provided to us. In all of
the following tables, column ”TW” represents our algorithm.

5.1 Results on UBO20 Instances

All of these instances consists of 20 activities. We run both algorithms with a
100-second time limit. Out of the 90 instances, 20 were infeasible. As we can
see in Table 1, our solver (TW) was capable to solve all the 70 feasible instance
within 22 seconds at most, while the code of Schwindt exceeded the 100-second
time limit in three cases.

Having no access to the number of search-tree nodes generated by the solver
of Schwindt, we do not provide a comparison of the sizes of search-trees.

Time Window Computations for RCPSPWET 137

Table 1. Results on UBO20 instances

TW Schwindt

inst. solved to opt. in 100s 70 67

max solution time 21.97s > 100sa

avg. solution timeb 0.22s 1.32s

a There were 3 instances which took more than 100s.
b On instances both solver solved to optimality.

5.2 Results on UBO50 Instances

Each of the 90 instances in this group consists of 50 activities, and we performed
a more thorough evaluation. We run the tests with 100, 200, 400-second time
limits. Out of the 90 instances, there were 17 instances which did not admit a
feasible solution. Both algorithms proved infeasibility of these instances within
a few seconds. For all other instances our algorithm found a feasible solution
already within 100 seconds. However, the method of Schwindt did not find a
feasible solution for 3 additional instances within 100s, and for 1 additional
instance within 200s, while it found a feasible solution for all feasible instances
within 400s, see Table 2.

Table 2. Number of feasible UBO50 instances for which no feasible solution was found

Time limit TW Schwindt

100s 0 3
200s 0 1
400s 0 0

Table 3 shows the number of instances solved to optimality by the algorithms.
Our solver was able to solve more instances to optimality with respect to all three
time limits. Moreover, as the time limit increased, our solver solved more new
instances to optimality than that of Schwindt.

Table 3. Number of UBO50 instances solved to optimality.

Time limit TW Schwindt Both

100s 32 24 24
200s 35 26 26
400s 39 28 28

Table 4 depicts the average running times on those instances solved to op-
timality by both solvers within the respective time limits. As can be seen, our
solver is faster on average.

138 A. Kéri and T. Kis

Table 4. Average solution times on UBO50 instances

Time limit TW Schwindt

100s 8.64s 22.38s
200s 11.89s 33.01s
400s 13.32s 53.19s

Finally, Table 5 compares the algorithms on those instances not solved to op-
timality by either of two solvers. The columns ”TW”, ”Equal”, and ”Schwindt”
provide the number of instances (within this set of instances) on which our al-
gorithm found a better solution, the two solvers found solutions of equal total
tardiness, and the program of Schwindt found a better solution, respectively,
within the given time limits. Our method clearly performs better than that of
Schwindt in this respect, too.

Table 5. UBO50: Number of better non-optimal solutions found

TW Equal Schwindt

100s 22 13 6
200s 21 12 5
400s 21 8 5

The above results show that our solver outperforms that of Schwindt in all
aspects examined.

6 Conclusions

In this paper we have described a simple method for computing tight time win-
dows for activities when solving the RCPSPWET problem which enables us to
apply many domain filtering techniques known in the Constraint-based Schedul-
ing community. Our preliminary computational results indicate that it is worth-
while to make these computations as our method clearly outperforms the only
method published in the literature.

A major question is how to speed up our method. We have observed that in
60%-70% of the cases our method is able to reduce the domains of activities and
this is independent from the depth of the node in the search-tree. Nevertheless,
it would be interesting to find out in advance for which activities to perform the
computations in a search-tree node.

Acknowledgments. The authors are grateful to the three anonymous referees
for helpful comments that helped to improve the presentation.

Time Window Computations for RCPSPWET 139

References

1. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

2. Ph. Baptiste, C. Le Pape, W.P.M. Nuijten, Constraint-Based Scheduling. Applying
Constraint Programming to Scheduling Problems, Kluwer Academic Publishers,
Boston, 2001.

3. J.C. Beck, P. Refalo, A hybrid approach to scheduling with earliness and tardiness
costs, Annals of Operations Research, 118 (2003) 49-71.

4. P. Brucker, S. Knust, A. Schoo, O. Thiele, A branch and bound algorithm for the
resource-constrained project scheduling problem, Eur. J. Oper. Res. 107 (1998)
272-288.

5. E.L. Demeulemeester, W.S. Herroelen, A branch and bound procedure for the
multiple resource constrained project scheduling problem, Management Sci. 38
(1992) 1803-1818.

6. B. De Reyck, W.S. Herroelen, A branch and bound procedure for the resource-
constrained project scheduling problem with generalized precedence relations,
Eur. J. Oper. Res. 111 (1998) 152-174.

7. U. Dorndorf, Project scheduling with time windows: From theory to applications,
Physica-Verlag, 2002.

8. O. Icmeli, S. Erengüç, A branch and bound procedure for the resource-constrained
project scheduling problem with discounted cash flows, Management Sci. 42 (1996)
1395-1408.

9. A. Kéri, T. Kis, Primal-dual combined with constraint propagation for solving
RCPSPWET. In: G. Kendall, L. Lei and M. Pinedo (eds.), Proc. of the 2nd Mul-
tidisciplinary International Conference on Scheduling: Theory and Applications,
New York University, New York, July, 2005, pp. 748-751 (electronic edition).

10. A. Kéri, T. Kis, Primal-Dual combined with constraint propagation for solving
RCPSPWET, In: H-D. Haasis, H. Kopfer, J. Schönberger (eds.), Operation Re-
search Proceedings, September 7-9, 2005, Bremen, Germany, Springer, pp. 685-690.

11. L. Khatib, P. Morris, R. Morris, F. Rossi, Temporal Constraint Reasoning with
Preferences, Proc. Seventieth Int. Joint Conf. Artif. Intell. (IJCAI’01), August
4-10, 2001, Seattle, USA, pp. 322-327.

12. T.K.S. Kumar, Fast (incremental) algorithms for useful classes of simple tempo-
ral problems with preferences, Proc. Twentieth Int. Joint Conf. Artif. Intell. (IJ-
CAI’07), January 6-12, 2007, Hyderabad, India, pp. 1954-1959.

13. P. Morris, R. Morris, L Khatib, S. Ramakrishnan, A. Bachmann, Strate-
gies for global optimization of temporal preferences, LNCS 3258: Proc. Tenth
Int. Conf. Princip. Practice Artif. Intell. (CP 2004), Toronto, Canada, September
27-October 1, 2004, pp. 408-422.

14. K. Neumann, J. Zimmermann, Exact and truncated branch and bound procedures
for resource-constrained project scheduling with discounted cash flows and general
temporal constraints, Central Eur. J. of Oper. Res., 10:4 (2002) 357-380.

15. K. Neumann, C. Schwindt, J. Zimmermann, Project Scheduling with Time Win-
dows and Scarce Resources, 2nd ed. Springer, Berlin, 2003.

16. W.P.M. Nuijten, Time and resource constrained scheduling: A constraint satisfac-
tion approach, PhD Thesis, Eindhoven University of Technology, 1994.

140 A. Kéri and T. Kis

17. C. Schwindt, ProGen/max: A New Problem Generator for Different Resource-
Constrained Project Scheduling Problems with Minimal and Maximal Time
Lags, Technical report WIOR-449, University of Karlsruhe, Karlsruhe, 1996.
(URL: http://www.wior.uni-karlsruhe.de/LS Neumann/Forschung/ProGenMax/
rcpspmax.html)

18. C. Schwindt, Minimizing earliness-tardiness costs of resource constrained projects,
In: K. Inderfurth, G. Schwödiauer, W. Domschke, F. Juhnke, P. Kleinschmidt,
G. Wäscher (eds.), Operations Research Proceedings 1999. Springer, Berlin, 2000,
pp. 402-407.

19. C. Schwindt, J. Zimmermann, A steepest ascent approach to maximizing the net
present value of projects, Math. Methods of Oper. Res. 53 (2001) 435-450.

20. M. Vanhoucke, E.L. Demeulemeester, W.S. Herroelen, An exact procedure for the
resource-constrained weighted earliness-tardiness project scheduling problem, An-
nals of Oper. Res. 102 (2001) 179-196.

21. M. Wennink, Algorithmic support for automated planning boards, PhD Thesis,
Eindhoven University of Technology, 1995.

Necessary Condition for Path Partitioning Constraints

Nicolas Beldiceanu and Xavier Lorca

École des Mines de Nantes, LINA FRE CNRS 2729, FR – 44307 Nantes Cedex 3
{Nicolas.Beldiceanu,Xavier.Lorca}@emn.fr

Abstract. Given a directed graph G, the K node-disjoint paths problem consists
in finding a partition of G into K node-disjoint paths, such that each path ends
up in a given subset of nodes in G. This article provides a necessary condition
for the K node-disjoint paths problem which combines (1) the structure of the
reduced graph associated with G, (2) the structure of each strongly connected
component of G with respect to dominance relation between nodes, and (3) the
way the nodes of two strongly connected components are inter-connected. This
necessary condition is next used to deal with a path partitioning constraint.

1 Introduction

Graph node-partitioning constraints are ubiquitous in many practical applications such
as vehicle-routing [2] or network robustness [17]. Partitioning patterns are usually cy-
cles [3,10], trees [4,12] or paths [13,15]. Within the context of a constraint that partitions
a digraph into node-disjoint paths (named path partitioning constraint in the following),
necessary conditions preventing circuits and enforcing the fact that each node has no
more than one predecessor were already introduced in [5,13,15]. However, none of
these necessary conditions really consider the number of paths to build. The aim of this
article is to come up with necessary conditions related to the number of paths required
to partition a directed graph.

Consider a directed graph G = (V , A), a path partition of G is a collection of
node-disjoint paths P1 = (V1, A1), . . . , PK = (VK , AK) in G whose union is V , i.e.,
Vi ∩ Vj = ∅ for i �= j and

⋃K
i=1 Vi = V . The K node-disjoint paths problem [16,18]

(denoted K-NDP in the following) determines a path partition of G such that K ∈ [K, K],
where K is the minimum number of paths in a path partition of G and K is the size of a
given subset T ⊆ V of potential final nodes for paths.

Finding a compatible path partition of G is NP-complete [9,16], even when fixing the
number of paths to K = 2. However, there are many known particular graphs classes on
which the path partition problem is solvable in polynomial time [1,14,19]. Within the
context of a general path partitioning constraint, we cannot make any assumption on the
graph class of G but, we still want to come up with necessary conditions based on the
structure of G (e.g., the reduced graph1 of G, the dominance relation [11,13] between
nodes of G).

1 The reduced graph Gr of a given directed graph G is derived by the following transformation
of G: To each strongly connected component (scc) of G we associate a node of Gr, to each
arc of G that connects different scc’s corresponds an arc in Gr .

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 141–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

142 N. Beldiceanu and X. Lorca

d

a 9 b

b1c

a3ba 0 b

d 7 b b 10 c

a 5 d d 6 a b 11 d

c8da4cc2

(a)

11

[b, d]

10

[b, c]

9

[a, b]

8

[d, c]

6

[d, a]

7

[d, b]

5

[a, d]

2

[d, c] 4

[c, a]1

[c, b] 3

[b, a]0

[a, b]

(b)

Fig. 1. Part (a) A set of fixed tasks in time, where beside its position on the time axis, each task
t is described by a triple s, i, d which respectively denotes the start place, the identifier, and the
destination place of task t. Part (b) gives the corresponding digraph.

The K node-disjoint paths problem has many practical uses. A typical application
of the problem consists to cover a set of tasks (e.g., deliveries, flights) by a minimum
number of resources (e.g., lorries, planes). Each task is defined as an interval with an
earliest start, a latest end and a fixed duration. In addition, a task has also a start place
and a destination place. Within a solution, a task t1 can immediately precede a task t2
if (1) the earliest end of t1 precedes the latest start of t2, and if (2) the destination place
of t1 is equal to the start place of t2.

Example 1. As an instance of the previous application, consider the set of fixed tasks
depicted by Figure 1a. Figure 1b provides the corresponding graph G which can be
covered by 6 node-disjoint paths. Observe that G is acyclic since all tasks are completely
fixed in time.

In the context of paths partitioning constraints [5,7,13], the contribution of this article
is to show how to combine network flow and dominance theory to get a general neces-
sary condition for the path partitioning constraint. In the following, we first introduce,
in Section 2, some recalls on network flow theory provided by [6, p.72]. Next, in Sec-
tion 3, a flow-based approach is studied in the case of directed acyclic graphs (DAGs).
Then, Section 4 generalizes our flow-based approach to the non-acyclic case, dealing
with bottlenecks of the reduced graph of the graph to partition: Sections 4.1 and 4.2
show how to get tighter bounds on the arcs of the network according to (1) the domi-
nance relation between nodes of the graph to partition and (2) the way the nodes of two
strongly connected components are inter-connected. Next, Section 5 shows how to par-
tially exploit the flow-based relaxation of the K node-disjoint paths problem to improve
the filtering related to a path partitioning constraint.

2 Preliminaries

We first recall three definitions taken from [6, p.72] in order to define basic notions
of network flow theory. Moreover, we recall the well-known Hoffman theorem that
generalised the flow-conservation to any cocycle of a network. These notions will be
used throughout the article.

Necessary Condition for Path Partitioning Constraints 143

Definition 1. Let A be a set of nodes of a graph G = (U, E), let ω+(A) be the set of
emanating arcs from A, and let ω−(A) be the set of entering arc in A. A cocycle is the
set of arcs ω(A) = ω+(A) ∪ ω−(A).

Definition 2 (Network)
Let N = (U ∪ {s, t}, E) be a directed graph for which every arc (i, j) ∈ E has a
non-negative, integer-valued lower bound lij and a non-negative, integer-valued ca-
pacity cij (greater than or equal to lij). For each node i, distinct from s and t, there is
a path in N from s to i and a path from i to t. There is also an arc from t to s, named
backward arc of N .

Definition 3 (Flow)
A flow of a network N = (U ∪ {s, t}, E) is defined by an integer function f : E �→ N

such that:

1. Capacity constraints: For any (i, j) ∈ E, lij ≤ f(i, j) ≤ cij .
2. Flow conservation:

∀x ∈ U,
∑

(i,x)∈ω−({x})
f(i, x) =

∑

(x,j)∈ω+({x})
f(x, j) (1)

A global flow F(N) of a network N is provided by:

F(N) =
∑

(s,j)∈ω+({s})
f(s, j) (2)

Theorem 1 (Hoffman). Given a network N = (U, E) defined by an integer function
f : E �→ N such that for all (i, j) ∈ E , fij ∈ [�ij , cij], there exists a feasible flow in N
iff for any cocycle ω(A) in N , we have:

∑

(i,j)∈ω+(A)

cij −
∑

(i,j)∈ω−(A)

�ij ≥ 0 (3)

3 K-NDP Problem in Directed Acyclic Graphs

This Section focuses the case of directed acyclic graphs for which the K-NDP problem
can be solved in polynomial time [1,14,19]. When the number of paths K is not fixed,
the key point of any approach solving the K-NDP problem is the evaluation of the lower
bound on the minimum number of paths for partitioning the digraph G.

A first way to evaluate a lower bound considers the size of a maximum antichain2

(also named width) of the digraph G (see [8] for a characterisation). Indeed, once the
antichain is traversed, there is no way back since G is acyclic. However, even if the
width of G constitutes a sharp lower bound for the path covering problem (see [14,
p.219]), this is not true anymore in the context of the node-disjoint paths problem. Next
example illustrates this point:

2 An antichain in a partially ordered set P is a subset A of P such that every pair of members
of A is incomparable, i.e., for any x, y in A, neither x ≤ y nor y ≤ x (in our context, there is
neither a path from x to y, nor a path from y to x).

144 N. Beldiceanu and X. Lorca

8
A2

A1

A3

A0

7

6

5

4

3

2

1

0

Fig. 2. A directed acyclic graph G, where potential final nodes are depicted in grey. Thick arcs
depict a path partition of G minimising the number of node-disjoint paths.

Example 2. In Figure 2, from the maximum antichains A0 = {0, 1, 2} and A1 =
{6, 7, 8} of Gr, the width of G is equal to 3 and then, there exists a path covering of
G with 3 paths (e.g., 〈0, 6〉, 〈1, 3, 5, 7〉, 〈2, 4, 5, 8〉). But observe that, in the context of
a path partition, the antichains A2 = {3, 4} and A3 = {5} constitute a bottleneck be-
tween any node of A0 and any node of A1. Thus, partitioning G with 3 node-disjoint
paths is clearly impossible. In fact, 4 node-disjoint paths are required to partition G
(e.g., 〈0, 6〉, 〈1, 3, 5, 7〉, 〈2, 4〉, and 〈8〉).

Within the context of directed acyclic graphs, this section introduces a classical flow-
-based approach (Example 3) in order to provide a necessary and sufficient condition
for the K-NDP problem, as well as a sharp lower bound on the minimum number of
node-disjoint paths partitioning G. In this approach, one has to build from every K-path
partition of the graph, a K-flow in a derived graph. A simple idea is to add for each
node i two arcs (s, i) and (i, t) (where s and t are two extra-nodes). Then, for every
path 〈i1, . . . , in〉 of the K-partition, one can add a flow arc (s, i1) and a flow arc (in, t),
which leads to a K-flow. The problem of this construction is that the resulting graph
always admit a zero flow, which leads to a trivial lower bound. In order to impose a
non-null flow through each node of the graph we split each node i into i′ and i′′ and add
the arc (i′, i′′). Thus, because of the flow conservation, there will be a non-null flow
from i′ to i′′.

Example 3. Figure 3 illustrates Definitions 4 and 5. Each node i of Figure 3a is splitted
in two nodes i′ and i′′ in Figure 3b. The dotted arc of Figure 3b corresponds to the
backward arc of Definition 5, with a [1, K] flow, thick arcs correspond to node-splitting
arcs, with an unit flow, dashed arcs to path-extremities arcs, with a [0, K] flow, and plain
arcs to dag’s arcs, with a [0, K] flow.

Definition 4. Given a directed acyclic graph G, the network N = (X , E , c) is defined
in the following way:

– To each node i of G corresponds two nodes i′ (named input of node i) and i′′

(named output of node i) of X , as well as a node-splitting arc (i′, i′′) of E . Let
I ′ and I ′′ respectively denote the two corresponding set of nodes. Finally, two
additional nodes s (source) and t (sink) belong to X .

Necessary Condition for Path Partitioning Constraints 145

7

4

3

1

0

2

5

6

(a) G

fts = [1, K]

ts

0′′0′
1

3′ 3′′
1

4′ 4′′
1

1′
1

1′′

2′
1

2′′

5′
1

5′′

6′
1

6′′

7′
1

7′′

(b) N

Fig. 3. For the digraph G depicted by Part (a), Part (b) provides the corresponding network N .
Dashed arcs represent path-extremities arcs, thick arcs represent node-splitting arcs, the dotted
arc (t, s) represents the backward arc of the network, and plain arcs represent dag’s arcs.

– To each arc (i, j) of G corresponds an arc (i′′, j′) of E , where i′′ is the output node
of i and j′ the input node of j.

– There is an arc (s, i′) in E , for all input nodes i′ ∈ I′, as well as an arc (i′′, t) for
all output nodes i′′ ∈ I′′ of a node i that belongs to T .

– A backward arc from t to s is added.

We are now in position to define the function f associated with the network N . For this
purpose, we distinguish several classes of arcs respectively corresponding to backward,
intra-scc, inter-scc, and path-extremities arcs.

Definition 5. Given a directed acyclic graph G, the flow on each arc of the correspond-
ing network N is defined in the following way:

1. Backward arc: f(t, s) = fts ∈ [1, K], where K = |T |.
2. Node-splitting arcs: f(i′, i′′) = fi = 1.
3. Dag’s arcs: f(i′′, j′) = fij ∈ [�ij , cij] where �ij = 0 and cij = K.
4. Path-extremities arcs: f(s, i) = f(i, t) = fsi = fit ∈ [0, K], for all (s, i) and (i, t)

in E .

Observe that any cycle in N contains the arc (t, s), because G is a directed acyclic
graph. Then, according to flow conservation, the global flow of N is provided by:

F(N) =
∑

(s,j)∈ω+({s})
fsj = fts (4)

In the following, the global flow of N corresponds to the flow fts on backward arc
(t, s).

Theorem 2. A directed acyclic graph G can be partitioned in K node-disjoint paths iff
there exists a feasible flow fts = K in the network N .

Proof. We ensure the condition is necessary. Assume (a) there exists a path partition of
G of size K ∈ [1, K] and (b) there does not exist a feasible flow in N = (X , E) with

146 N. Beldiceanu and X. Lorca

F(N) ∈ [1, K]. We show there is a contradiction. By assumption of (b), there does not
exist a feasible flow in N with F(N) = K then, there exists a set of nodes A ⊆ X such
that s ∈ A, for which Hoffman theorem ensures:

Uω+(A) =
∑

(i,j)∈ω+(A)

cij <
∑

(i,j)∈ω−(A)

�ij = Uω−(A) (5)

For the cocycle ω(A), (t, s) is the unique arc entering a node of A (because s ∈ A and
N \ {(t, s)} is acyclic). Moreover by definition of N , fts ∈ [1, K], thus:

1 ≤ Uω+(A) < Uω−(A) ≤ K (6)

This means the minimum flow entering ω(A) exceeds the maximum capacity emanating
from ω(A). The contradiction is obvious by considering that ω(A) is cycle free.

Then, we prove that the condition is sufficient. We show that, from any feasible flow
of N , F(N) = fts = K, we can build a partition of G in K node-disjoint paths. For this
purpose, consider a feasible flow fts in N and a DAG N ′ = (X ′, E ′) defined from the
flow fts in the following way:

– X ′ = X \ {s, t}.
– E ′ = {(i, j) ∈ E \ (t, s) | fij = 1}.

The flow fts ensures N ′ is a DAG of K connected components such that each one is an
elementary path. This property is directly derived from the fact that for each dag’s arc
(i, j) of N , either fij = 1 or fij = 0 (because in the case of DAGs each node-splitting
arc (i′, i′′) as a flow fi = 1). Then, by contracting each node-splitting arc of N ′ in one
single node, N ′ becomes a partial graph of G induced by E ′ ⊆ A, and composed by K
node-disjoint paths. ��

A lower bound on the number of the node-disjoint paths partitioning G is introduced by
the following Lemma:

Lemma 1. Given a directed acyclic graph G and its corresponding network N , the
lower bound on the number of node-disjoint paths partitioning G is given by the mini-
mum feasible flow f�

ts of N : f�
ts = K.

Proof. Directly provided by Theorem 2. ��

4 K-NDP Problem in Non-acyclic Graphs

As we saw in the previous section, in the case of a non-fixed k, the key point of any ap-
proach solving the K-NDP problem is the evaluation of a lower bound on the minimum
number of paths for partitioning the digraph G. Indeed, consider a digraph G and a set
of potential final nodes T . From any path partition P of size p ∈ [1, |T |], one can build
a path partition P ′ of size p′ ∈ [p + 1, |T |] by eventually decomposing one of its path
with respect to its potential final nodes. However, finding from P , a path partition P ′′ of
size p′′ ∈ [1, p − 1] is NP-complete (assume p = 2 then, p′′ = 1 and as a consequence,
we have to build a Hamiltonian path).

Necessary Condition for Path Partitioning Constraints 147

7

4

3

1

0

2

5

6

(a) Gr

fts = [1, K]

ts

0′′0′
[1, w0]

3′ 3′′
[1, w3]

4′ 4′′
[1, w4]

1′
[1, w1]

1′′

2′
[1, w2]

2′′

5′
[1, w5]

5′′

6′
[1, w6]

6′′

7′
[1, w7]

7′′

(b) N

Fig. 4. For the digraph Gr depicted by Part (a), Part (b) provides the corresponding network N .
Dashed arcs represent path-extremities arcs, thick arcs represent node-splitting arcs, dotted arc
(t, s) represents the backward arc of the network.

In Section 3, a flow model was proposed in a case of directed acyclic graph. This sec-
tion shows how to improve this model by considering the reduced graph Gr associated
to the digraph G. A node of the reduced graph Gr corresponds to a strongly connected
component of the initial graph G. Therefore we will need distinguish dag’s arcs (i.e., the
arcs of Gr) and node-splitting arcs (i.e., the arcs that represents scc’s of G) and apply
the lower bound to the former. Thus, Definitions 4 and 5 are extended to the case of
non-acyclic graphs in the following way (Figure 4):

– The network N = (X , E , c) is derived from the reduced graph Gr associated to G.
– The flow associated to each node-splitting arc (i′, i′′) of N is now evaluated as

follows: f(i′, i′′) = fi ∈ [�i, ci] for each node-splitting arc (i′, i′′) associated with
a scc Ci of G, where �i (resp. ci) corresponds to a lower bound (resp. upper bound)
on the minimum (resp. maximum) number of node-disjoint paths partitioning Ci.
We have fi ∈ [1, wi] where wi denotes the number of nodes in Ci which are either
potential final nodes in G, or nodes directly connected, by one single arc of G, to
another scc Cj of G (j �= i).

Then, the necessary and sufficient condition introduced by Theorem 2 can be directly
generalized to a necessary condition in the case of non-acyclic graphs:

Theorem 3. If there exists a path partition of G of size K ∈ [K, K] then, there exists a
feasible flow fts = K in the network N corresponding to G.

Similarly, the sharp lower bound introduced by Lemma 1 is generalized to a non-sharp
lower bound on the number of node-disjoint paths partitioning G:

Lemma 2. Given a digraph G and its corresponding network N , a lower bound on the
number of node-disjoint paths partitioning G is given by the minimum feasible flow f�

ts

of N : f�
ts ≤ K.

In the following, we propose two ways for improving the evaluation of the minimum
feasible flow in the network N associated to the digraph G: Firstly, in Section 4.1, we
show how to estimate the number of paths partitioning each scc of G in order to improve

148 N. Beldiceanu and X. Lorca

C1

12

11

109

8

7

6

5

4

3

2

10

d

ΔdΔ̄d

C4

C3

C2C0

Fig. 5. This figure depicts a scc Ci of G, a dominator node d of Di = {1, 4, 8, 9, 11, d}. Grey
nodes depict the set Ti. The rectangles contained in Δd and Δ̄d represent scc created by the
removal of d in Ci.

the evaluation of the flow going throughout each node-splitting arc of N . Secondly, in
Section 4.2, we show to estimate the number of paths between two scc’s of G in order
to improve the evaluation of the flow going throughout each dag’s arcs of N .

4.1 Estimating the Number of Paths Partitioning a scc

A first way to improve the tightness of the relaxation of the K-NDP problem, when some
scc’s of G = (V , A) involve more than one node (i.e., G is not a DAG), is to refine the
bounds on the flow fi ∈ [�i, ci] for each node-splitting arc representing the scc Ci of
G. This section shows how to improve the tightness of �i (i.e., the minimum number of
paths for partitioning Ci) which was originally set to 1 in Definition 5. The idea is to
identify a node d of Ci, whose removal increases the number of scc’s of Ci \ {d} (i.e.,
the graph corresponding to the scc Ci from which we remove the node d), in order to
re-apply Lemma 2 on the new DAG built from the reduced graph of Ci \ {d}. This is
achieved by using the dominance relation between nodes of Ci that we now introduce:

Definition 6 ([11]). Given a digraph G and two nodes i, j of G such that there is at
least one path from i to j, a node d is a dominator of node j with respect to node i iff
there is no path from i to j in G \ {d}. The set of dominators of j with respect to i is
denoted by DOM〈G,i〉(j).

Notations 1. Given a directed graph G = (V , A), let Ci be a scc of G:

– Ci = (Vi, Ai) denotes the sub-graph of G corresponding to Ci.
– Ti denotes the subset of nodes in Vi that are either potential final nodes of G, or

nodes reaching, by one single arc, another scc Cj of G.
– Let Di be the set of dominator nodes of Ci defined according to the node set Ti:

Di = {d | ∃v ∈ Vi, ∀w ∈ Ti, d ∈ DOM〈Ci,v〉(w)} (7)

So, the removal of a dominator d ∈ Di creates two kinds of scc’s (Figure 5 illustrates
this point on an example):

Necessary Condition for Path Partitioning Constraints 149

– Δd is the, possibly empty, set of new scc’s from which at least one node of Ti can
be reached by at least one path that does not contain d. Let Δ�

d denotes the set of
nodes involved in the scc’s of Δd.

– Δ̄d is the, possibly empty, set of new scc’s from which no node of Ti can be reached
by a path that does not contain d. Let Δ̄�

d denotes the set of nodes involved in the
scc’s of Δ̄d.

Example 4. In the scc Ci of G depicted by Figure 5, we have Ti = {7, 8, 10, 12}. The
set of dominator nodes of Ci with respect to Ti is Di = {1, 4, 8, 9, 11, d}. For instance,
any path from node 3 to a node of Ti encounters nodes 4 and node d. Thus, nodes 4
and node d are dominators of node 3 with respect to all the nodes of Ti. Figure 5 also
illustrates the partitioning of a scc Ci in strongly connected components, produced by
the removal of node d:

– Δd = {Cd
2 , Cd

3 , Cd
4} and Δ�

d = {7, 8, 9, 10, 11, 12},
– Δ̄d = {Cd

0 , Cd
1} and Δ̄�

d = {0, 1, 2, 3, 4, 5, 6}.

We now introduce a proposition that will allow us to reduce the problem of estimating
the minimum number of paths partitioning Ci to the problem of finding the minimum
number of paths partitioning Δd.

Proposition 1. If there exists a path partition of G then, for each dominator node d ∈
Di of a scc Ci, there exists a Hamiltonian path, finishing on a predecessor of d, in the
induced sub-graph of G by the set of nodes Δ̄�

d.

Proof. Remember that, by construction of Δ̄�
d, a path cannot finish on any node of Δ̄�

d.
Since d dominates any node of Ti ⊂ Δ�

d with respect to any node of Δ̄�
d, d is the only

possible output for the nodes of Δ̄�
d. Consequently, if there does not exist a Hamiltonian

path in Δ̄�
d then node d is reached by at least two node-disjoint paths covering Δ̄�

d: A
contradiction. ��

Proposition 2. Consider the reduced graph GΔd
(resp. GΔ̄d

) associated with the in-
duced sub-graph of a scc Ci of G by the nodes of Δ�

d (resp. Δ̄�
d). Let xΔd

be a lower
bound of the minimum number of node-disjoint paths partitioning GΔd

. A lower bound
of the minimum number of node-disjoint paths partitioning Ci (denoted ldi), with respect
to a dominator node d of Ci, is defined by:

– xΔd
− 1 ≤ ldi , if there exists an arc (u, v) in Ci such that u ∈ Δ�

d, v ∈ Δ̄�
d, and the

scc containing node v is a source node in GΔ̄d
.

– xΔd
≤ ldi , otherwise.

The lower bound xΔd
is defined by Lemma 2 according to the flow-based relaxation of

the digraph GΔd
with respect to the set of potential final nodes provided by Ti. Finally,

the maximum value in the set of ldi ’s (d ∈ Di) provides a lower bound of the minimum
path partition covering Ci:

Proposition 3. Let �i be the minimum number of node-disjoint paths partitioning the
scc Ci of G and let Di be the set of dominator nodes of Ci then, a lower bound of �i is:

1 ≤ max({ldi | d ∈ Di}) ≤ �i (8)

150 N. Beldiceanu and X. Lorca

117

8

136

5

10

9

4

3

2

1

C0 C1

0

12

(a) G

Y

10

9

8

6

4

3 7

5

X

(b) B01

[0, 7][4, 5][4, 5]

ts

C ′
1 C ′′

1C ′′
0C ′

0

[0, 3]

[5, 7]

[0, 7]

[0, 7]
[0, 7]

(c) Network N associated to G

Fig. 6. Part (a) depicts a digraph G composed by two scc’s C0 and C1. Thick arcs represent a
possible solution maximizing the number of node-disjoint path partitioning G (5 paths). Bold
nodes represent potential final nodes of G. Part (b) depicts the bipartite graph B01 extracted from
the scc’s C0 and C1. Part (c) depicts the network N associated to G.

4.2 Estimating the Number of Paths Between Two scc’s

A second way to refine the relaxation of the K-NDP problem is to adjust the bounds on
the flow fij ∈ [lij , cij], for each inter-scc arc. This section shows how to improve the
tightness of the upper bound cij , which was originally set to K = |T | in Definition 5
(i.e., the number of potential final nodes in G). This is achieved by computing the cardi-
nality of a maximum bipartite matching between nodes i incidents to an arc emanating
from a scc Ci, and entering a node j of a scc Cj .

Notations 2. Given two distinct scc’s Ci and Cj of G and a node i of Ci,

– ϕ+
ij denotes the number of arcs emanating from i and entering a node j of Cj .

– ϕ−
ij denotes the number of arcs entering node j of Cj and emanating from node i.

Given two distinct scc’s Ci and Cj of G such that there is at least one arc from a node
of Ci to a node of Cj , the maximum number of paths emanating from Ci and directly
entering Cj can be computed from a bipartite graph, extracted from Ci and Cj , defined
in the following way:

Definition 7. The bipartite graph Bij = (X , Y, E) associated with a pair of distinct
scc’s Ci and Cj of G = (V , A), such that there is an arc from a node of Ci to a node of
Cj , is defined by:

– X = {i ∈ Ci | ϕ+
ij > 0},

Necessary Condition for Path Partitioning Constraints 151

– Y = {j ∈ Cj | ϕ−
ij > 0},

– E = {(i, j) ∈ A | i ∈ Ci, j ∈ Cj}.

Proposition 4. Let Mij denotes the cardinality of maximum matching in the bipartite
graph Bij associated with a pair of distinct scc’s, Ci and Cj , of G. The capacity cij ,
going through an inter-scc arc (i′′, j′) of the network N associated with G is bounded
by Mij: cij ≤ Mij .

Example 5. From the digraph G depicted by Figure 6a, we build the bipartite graph B01
depicted by Figure 6b. A maximum cardinality matching in B01, of size M01 = 3, is
depicted by thick arcs of Figure 6b. The minimum number of node-disjoint paths parti-
tioning G is equal to 5 (thick arcs of Figure 6a depict the following paths: {0, 1, 2, 3},
{4, 7}, {5, 8}, {6, 9} and {11, 13, 12, 10}). Figure 6c depicts the resulting network N
associated to G. Notice that for the intra-scc arc (C′

0, C
′′
0), the lower bound on the min-

imum number of paths covering scc C0 is refined to the value 4 according to the dom-
inator node 2 (see Section 4.1). Similarly, the lower bound on the minimum number of
paths covering scc C1 is refined to the value 4 according to the dominator node 12. In
the same way, the upper bound on the maximum number of paths emanating scc C0 and
entering scc C1 (depicted by the capacity of the inter-scc arc (C′′

0 , C′
1)) is refined to the

value M01 = 3.
Thus the value of a minimum flow in N is 5. Indeed, assume the value is 4 (i.e.

fts = 4) then, 4 flow units are pushed through the arc (s, C′
0) because �0 = 4, and we

know that at most only 3 units have to reach C′
1: There is a contradiction with �1 = 4.

Thus, there does not exists a feasible flow with fts = 4.

5 A path Partitioning Constraint

A path partitioning constraint can be defined by a directed graph G = (V , A), a number
of paths NPATH, and a set T ⊆ V of potential final nodes. W.l.o.g., our formal de-
scription of the path constraint follows the description of the tree constraint introduced
in [4]. This allows to directly reuse all the filtering developed for the tree constraint
which prevents the creation of circuits. In addition, we can also reuse the in-degree
constraint of [5] that enforces one single predecessor for each node of the digraph.

Thus, the path constraint has the form path(NPATH, NODES), where NPATH is a do-
main variable3 specifying the number of paths in the path partition, and NODES is
the collection of n nodes NODES[1], . . . , NODES[n] of the given digraph G. Each node
vi = NODES[i] has the following attributes, which complete the description of G:

– I is a unique integer in [1, n]. It can be interpreted as the label of node vi.
– S is a domain variable (a successor variable) whose domain consists of elements

(nodes labels) of [1, n]. It can be interpreted as the unique successor of node vi. If
i ∈ dom(NODES[i].S), then we say that vi is a potential final node.

3 A domain variable V is a variable that ranges over a finite set of integers denoted by dom(V).
min(V) and max(V) respectively denote the minimum and the maximum value of V .

152 N. Beldiceanu and X. Lorca

For each i ∈ [1, n], the terms NODES[i].I and NODES[i].S respectively denote the I and
S attributes of NODES[i]. Moreover, the digraph G associated with the constraint can be
formally defined in the following way:

Definition 8. The n-nodes, m-arcs directed graph G = (V , A) and the set T of a
path(NPATH, NODES) constraint are defined by:

– V = {i | i ∈ [1, n]},
– A = {(i, j) | j ∈ dom(NODES[i].S), i �= j)},
– T = {i | i ∈ dom(NODES[i].S)}.

Finally, to complete the description of the constraint, we introduce the formal definition
of a ground path partitioning constraint. For this purpose, we directly reason on the
digraph G that models the path constraint.

Definition 9. A ground instance of a path(NPATH, NODES) constraint is satisfied iff:

– ∀i ∈ [1, n] : NODES[i].I = i.
– G consists of NPATH connected components such that each one is an elementary

path that ends up in a potential final node.

The rest of this section is organised as follows: Section 5.1 provides two necessary con-
ditions for partitioning the directed graph G associated with a path constraint, derived
from the necessary condition introduced in Theorem 3. Section 5.2 shows how to ex-
ploit this necessary condition in order to filter NPATH as well as the successor variables
modelling the associated digraph G.

5.1 Feasibility

Based on Theorem 3 of Section 4, we introduce an algorithm for checking the fea-
sibility of the path constraint according to the maximum number of allowed paths
max(NPATH):

– Check if there exists a feasible flow in the network N associated with G.
– For each scc Ci of G, for each dominator node d of Ci, there exists at most one path

for covering the digraph GΔ̄d
(derived from Proposition 1).4

5.2 Filtering Algorithm

This section shows how to filter the domains of the successor variables
NODES[1].S, . . . , NODES[n].S and of the variable NPATH from the digraph G associated
with a path partitioning constraint:

– Adjust the minimum value of NPATH to the value of a minimum feasible flow in the
network N associated with G.

4 Remember that GΔ̄d
is the reduced graph associated with the induced sub-graph of G by the

nodes of Δ̄�
d.

Necessary Condition for Path Partitioning Constraints 153

12

(1)

(4)

(4)

(3)

(2)

C1

C0
C2

C3

C4

Δ̄d Δd

d

0 1

2

3

4

5

6

7

8

9 10

11

Fig. 7. From Figure 5 of Section 4.1, dotted arcs depict infeasible arcs of G detected by the
algorithm introduced in Section 5.2.

– For each scc Ci of G, for each dominator node d ∈ Ci, remove each arc (i, j) from
G such that:

• Case (1): i = d and j ∈ Δ̄�
d.

• Case (2): i ∈ Δ�
d and j ∈ Δ̄�

d such that the scc, created by the removal of d and
containing j, is not a source in the digraph GΔ̄d

.
• Case (3): j = d and i ∈ Δ̄�

d such that the scc, created by the removal of d and
containing i, is not a sink in the digraph GΔ̄d

.
• Case (4): i ∈ Δ�

d, j = d and, Δ̄�
d �= ∅.

Example 6. Figure 7 illustrates infeasible arcs detected by the previous algorithm. Arcs
(d, 1) and (d, 2) are detected by Case (1), arc (8, 6) is detected by Case (2), arc (2, d)
is detected by Case (3) and, arcs (9, d) and (11, d) are detected by Case (4).

Observe that one could also remove any arc (i, j) of G, such that i and j belong to
two distinct scc’s Ci and Cj , if the corresponding inter-scc arc in N between Ci and Cj

cannot carry any flow (in any feasible flow of N). We did not include this filtering within
the previous algorithm since we do not know how to do this efficiently by computing
one single feasible flow.

6 Conclusion

The filtering algorithms proposed for previously existing path constraints were only
based on the prevention of circuits, as well as the in-degree constraints (each node has
at most one predecessor). This article considers the path partitioning problem where
we should not exceed a given number of paths. Within this context it came up with a
flow model combining the structure of the reduced graph associated with G, the struc-
ture of each strongly connected components of G with respect to dominance relation
between nodes, and the way the nodes of two strongly connected components are in-
ter-connected.

However, several questions remain open. Firstly, in our approach, each dominator
node is considered independently from the others, and one can assume there exists a

154 N. Beldiceanu and X. Lorca

strong interaction between the dominator nodes of G, for which one can improve the
tightness of the bounds on each intra-scc arcs of N , as well as the related filtering.
Secondly, in Section 5.2, we suggest a filtering related to the detection of the arcs that
do not belong to any feasible flow of N . This problem is polynomial, but the existence
of an efficient algorithm (i.e., an algorithm which is not based on a repetitive test of
each arc of N) is not known to our knowledge.

Acknowledgements

We wish to thank the referees for helpful suggestions related to the form of the paper.

References

1. S. R. Arikati and C. P. Rangan. Linear algorithm for optimal path cover problem on interval
graphs. Inf. Process. Lett., 35(3):149–153, 1990.

2. M. Balinski and R. Quandt. On an Integer Program for Delivery Problem. Operations
Research, 12(2):300–304, 1964.

3. N. Beldiceanu and E. Contejean. Introducing global constraint in CHIP. Mathl. Comput.
Modelling, 20(12):97–123, 1994.

4. N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In CP-AI-OR’05, volume 3524
of LNCS, pages 64–78. Springer-Verlag, 2005.

5. N. Beldiceanu, P. Flener, and X. Lorca. Combining tree partitioning, precedence, incompa-
rability, and degree constraints, with an application to phylogenetic and ordered-path prob-
lems. Technical Report 2006-020, Department of Information Technology, Uppsala Univer-
sity, Sweden, April 2006.

6. C. Berge. Graphes et Hypergraphes. Dunod, Paris, 1970. In French.
7. H. Cambazard and E. Bourreau. Conception d’une contrainte globale de chemin. In

JNPC’04, pages 107–120, 2004. In French.
8. R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,

51:161–166, 1950.
9. S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.

Theor. Comput. Sci., 10:111–121, 1980.
10. L. G. Kaya and J. N. Hooker. A filter for the circuit constraint. In CP’06, volume 4204,

pages 706–710. Springer-Verlag, 2006.
11. T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM

Trans Program. Lang. Syst., 1(1):121–141, 1979.
12. P. Prosser and C. Unsworth. Rooted tree and spanning tree constraints. Technical Report

cppod-13-2006, CP Pod research group, May 2006.
13. L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving constrained

path problems. In PADL’06, volume 3819 of LNCS, pages 73–87, 2006.
14. A. Schrijver. Combinatorial Optimization. Springer, Berlin, 2003.
15. M. Sellmann. Cost-based filtering for shortest path constraints. In CP’03, volume 2833 of

LNCS, pages 694–708. Springer-Verlag, 2003.
16. G. Steiner. On the k-path partition of graphs. Theor. Comput. Sci., 290(3):2147–2155, 2003.
17. J. Suurballe. Disjoint Paths in a Network. Networks, 4:125–145, 1974.
18. J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math.,

61(1):83–90, 1995.
19. J.-H. Yan and G. J. Chang. The path-partition problem in block graphs. Inf. Process. Lett.,

52(6):317–322, 1994.

A Constraint Programming Approach to the

Hospitals / Residents Problem

David F. Manlove�,��, Gregg O’Malley��, Patrick Prosser,
and Chris Unsworth� � �

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
davidm/gregg/pat/chrisu@dcs.gla.ac.uk.

Abstract. An instance I of the Hospitals / Residents problem (HR)
involves a set of residents (graduating medical students) and a set of
hospitals, where each hospital has a given capacity. The residents have
preferences for the hospitals, as do hospitals for residents. A solution of
I is a stable matching, which is an assignment of residents to hospitals
that respects the capacity conditions and preference lists in a precise way.
In this paper we present constraint encodings for HR that give rise to
important structural properties. We also present a computational study
using both randomly-generated and real-world instances. We provide ad-
ditional motivation for our models by indicating how side constraints can
be added easily in order to solve hard variants of HR.

1 Introduction

Gale and Shapley described in their seminal paper [7] the classical Hospitals /
Residents problem (HR), referred to by the authors as the College Admissions
problem. An instance of HR involves a set of residents (i.e. graduating medical
students) and a set of hospitals. Each resident ranks in order of preference a
subset of the hospitals. Each hospital has an integral capacity, and ranks in order
of preference those residents who ranked it. We seek to match each resident
to an acceptable hospital, in such a way that a hospital’s capacity is never
exceeded. Moreover the matching must be stable – a formal definition of stability
follows, but informally stability ensures that no resident and hospital, not already
matched together, would rather be assigned to one another than remain with
their assignees. Such a resident and hospital could form a private arrangement
outside the matching, undermining its integrity. Gale and Shapley [7] described
a linear-time algorithm for finding a stable matching, given an instance of HR.

Many centralised matching schemes that automate the process of assigning
residents to hospitals employ algorithms that solve HR and its variants [25].
For example, the National Resident Matching Program (NRMP) in the US [23]
is perhaps the largest such scheme. The NRMP has been in operation since

� Supported by RSE / Scottish Executive Personal Research Fellowship and EPSRC
grant EP/E011993/1.

�� Supported by EPSRC grant GR/R84597/01.
� � � Supported by an EPSRC studentship.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 155–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

156 D.F. Manlove et al.

1952 and handles the annual allocation of some 31,000 residents to hospitals.
Counterparts of the NRMP elsewhere are the Canadian Resident Matching Ser-
vice (CaRMS) [5] and the Scottish Foundation Allocation Scheme (SFAS) [13].
Similar matching schemes are also used in educational and vocational contexts.

A special case of HR occurs when each hospital has capacity 1 – this is the
Stable Marriage problem with Incomplete lists (SMI). In this context, residents
are referred to as men, whilst hospitals are referred to as women. A special case
of SMI occurs when the numbers of men and women are equal, and each man
finds all women acceptable and vice versa – this is the classical Stable Marriage
problem (SM), also introduced by Gale and Shapley [7]. A specialised linear-
time algorithm for SM, known as the Gale / Shapley (GS) algorithm [7], can
be generalised to the SMI case [12, Section 1.4.2]. Using a process known as
“cloning hospitals” (described in more detail in Section 3), a given instance I
of HR may be transformed to an instance J of SMI, and the GS algorithm can
be applied to J in order to give a stable matching in I. However in general
this method expands the instance size, so that in practice specialised algorithms
(such as those described in [12, Section 1.6]; see also Figure 2) are used to solve
HR directly and achieve a better worst-case time complexity.

Over the last few decades, stable matching problems, and SM in particular,
have been the focus of much attention in the literature [7,15,12,26]. Several en-
codings of SM and its variants as a Constraint Satisfaction Problem (CSP) have
been formulated [1,8,16,9,10,11,19,29,30]. Moreover, recent papers have focussed
on distributed variants of SM (including the Stable Roommmates problem, a
non-bipartite extension of SM) where preference lists are to be kept private
[27,28,3,4]. However, no encoding for HR has been considered before now.

This paper is concerned with a Constraint Programming (CP) approach to
solving HR. We firstly present in Section 3 a cloned model for HR, indicating
how existing formulations of SMI as a CSP [8] can be used in order to model
HR. We then present in Section 4 a constraint-based model of HR that deals
directly with an HR instance without cloning, achieving improved time and space
complexities. We show that the effect of Arc Consistency (AC) propagation [2]
applied to this model yields the same structure as the action of established
algorithms for HR [7,12]. As a consequence, a stable matching for the given
HR instance can be obtained without search (in fact we can in general obtain
two complementary stable matchings following AC propagation, with optimality
properties for the residents and hospitals respectively). We also demonstrate how
a failure-free enumeration can be used to find all solutions for a given HR instance
without search. These results therefore extend analogous results presented in [8]
for SMI. In Section 5, we present a specialised n-ary constraint for HR, comparing
and constrasting the time and space requirements for establishing AC with the
models presented in Sections 3 and 4. Then, in Section 6, we describe the results
of an empirical study which compares the various models presented in this paper
in practice, on both randomly-generated and real-world data.

The models in Sections 4 and 5 are non-trivial extensions of earlier constraint
models presented for SMI [8,19,29,30]. In the SMI case, clearly each woman can
be assigned at most one man, but to model an HR instance without cloning,

A Constraint Programming Approach to the Hospitals / Residents Problem 157

Residents’ preferences M0 Mz Hospitals’ preferences

r1 : h1 h3 – – h1 : (2) : r3 r7 r5 r2 r4 r6 r1

r2 : h1 h5 h4 h3 h1 h3 h2 : (3) : r5 r6 r3 r4

r3 : h1 h2 h5 h1 h1 h3 : (1) : r2 r5 r6 r1 r7

r4 : h1 h2 h4 h2 h2 h4 : (1) : r8 r2 r4 r7

r5 : h3 h1 h2 h3 h1 h5 : (1) : r3 r7 r6 r8 r2

r6 : h3 h2 h1 h5 h2 h2

r7 : h3 h4 h5 h1 h4 h5

r8 : h5 h4 h5 h4

Fig. 1. An HR instance. The GS-list entries are underlined, and the middle two columns
indicate the residents’ assigned hospitals in M0 and Mz (r1 is unassigned in both).

the main challenges are to maintain a representation of the set of assignees of a
given hospital hj , and of the identity of the worst resident assigned to hj .

The benefits of our approach are two-fold: firstly, the CSP models presented
here for HR indicate that AC propagation using a CP toolkit yields the same
structure as given by established linear-time algorithms for HR, from which all
solutions for a given instance can be generated in a failure-free manner without
search. Secondly, and more importantly, our models can be used as a basis on
which additional constraints can be imposed, covering variants of HR that arise
naturally in practical applications, but which cannot be accommodated easily
by existing algorithms. These include variants of HR that are NP-hard, and
for which no polynomial-time algorithm is currently known. Examples of such
variants, where appropriate side-constraints are suggested in three cases, are
given in Section 7 to provide additional motivation for our approach.

In the next section we present notation and terminology relating to HR, which
will be assumed in the remainder of this paper, and we also present some im-
portant structural and algorithmic results.

2 Definitions and Fundamental Results

We now give a formal definition of HR. An instance I of HR comprises a set
R = {r1, . . . , rn} of residents and a set H = {h1, . . . , hm} of hospitals. Each
resident ri ∈ R has an acceptable set of hospitals Ai ⊆ H ; moreover ri ranks Ai

in strict order of preference. For each hj ∈ H , denote by Bj ⊆ R those residents
who find hj acceptable; hj ranks Bj in strict order of preference. Finally, each
hospital hj ∈ H has an associated capacity, denoted by cj ∈ Z

+, indicating
the number of posts that hj has. For each ri ∈ R, let lri denote the length
of ri’s preference list, and for each hj ∈ H , let lhj denote the length of hj ’s
preference list; we assume that cj ≤ lhj . Let L denote the total length of the
residents’ preference lists in I. Given ri ∈ R and hj ∈ Ai, define rank(ri, hj) to
be the position of hj in ri’s preference list; rank(hj , ri) is defined similarly. An
example HR instance is shown in Figure 1 (the hospital capacities are indicated
in brackets).

158 D.F. Manlove et al.

An assignment M is a subset of R × H such that (ri, hj) ∈ M implies that
hj ∈ Ai (i.e. ri finds hj acceptable). If (ri, hj) ∈ M , we say that ri is assigned
to hj , and hj is assigned ri. For any q ∈ R ∪ H , we denote by M(q) the set
of assignees of q in M . If ri ∈ R and M(ri) = ∅, we say that ri is unassigned,
otherwise ri is assigned. Similarly, any hospital hj ∈ H is under-subscribed, full
or over-subscribed according as |M(hj)| is less than, equal to, or greater than
cj , respectively.

A matching M is an assignment such that |M(ri)| ≤ 1 for each ri ∈ R and
|M(hj)| ≤ cj for each hj ∈ H (i.e. each resident is assigned to at most one
hospital, and no hospital is over-subscribed). For convenience, given a resident
ri ∈ R such that M(ri) �= ∅, where there is no ambiguity the notation M(ri) is
also used to refer to the single member of M(ri).

A blocking pair relative to a matching M is a (resident,hospital) pair (ri, hj) ∈
(R × H)\M such that (i) hj ∈ Ai, (ii) either ri is unassigned in M or prefers
hj to M(ri), and (iii) either hj is under-subscribed or prefers ri to at least one
member of M(hj). A matching is stable if it admits no blocking pair.

Gale and Shapley [7] described an algorithm for finding a stable matching in
a given HR instance I, which is known as the resident-oriented Gale/Shapley
(RGS) algorithm [12, Section 1.6.3]. This algorithm finds the resident-optimal
stable matching M0 in I, in which each assigned resident is assigned to the
best hospital that he could obtain in any stable matching. On the other hand,
the hospital-oriented (HGS) algorithm [12, Section 1.6.2] is a second algorithm
for HR that finds the hospital-optimal stable matching Mz in I, in which each
hospital is assigned the best set of residents that it could obtain in any stable
matching. Figure 1 includes columns that give M0 and Mz for the example HR
instance shown. In general, the optimality property of each of M0 and Mz is
achieved at the expense of the hospitals and residents respectively (the “pessi-
mality” of each of these matchings for the relevant parties is discussed in Sections
1.6.2 and 1.6.5 of [12]). The RGS and HGS algorithms for HR are shown in Fig-
ure 2 (the term “delete the pair (ri, hj)” refers to the operations of deleting ri

from hj ’s preference list and vice versa). Using a suitable choice of data struc-
tures (extending those described in [12, Section 1.2.3]), both the RGS and the
HGS algorithms can be implemented to run in O(L) time and O(nm) space.

The deletions made by each of the RGS and HGS algorithms have the effect
of reducing the original set of preference lists in I. The reduced lists returned by
the RGS (respectively HGS) algorithm are known as the RGS-lists (respectively
HGS-lists). The intersection of the RGS-lists and the HGS-lists yields the GS-
lists. (E.g. the GS-lists for the HR instance shown in Figure 1 are represented
as underlined preference list entries.) The GS-lists in I have several useful prop-
erties, which are summarised below (these properties follow as a consequence of
Lemmas 1.6.2 and 1.6.4, and Theorems 1.6.1 and 1.6.2 of [12]):

Theorem 1. For a given instance of HR,
(i) all stable matchings are contained in the GS-lists;
(ii) in M0, each resident with a non-empty GS-list is assigned to the first hospital
on his GS-list, whilst each resident with an empty GS-list is unassigned;

A Constraint Programming Approach to the Hospitals / Residents Problem 159

M = ∅;
while (some ri ∈ R is unassigned

and ri has a non-empty list)
hj = first hospital on ri’s list;
/* ri applies to hj */
M = M ∪ {(ri, hj)} ;
if (hj is over-subscribed)

rk = worst resident assigned to hj ;
M = M\{(rk, hj)} ;

if (hj is full)
rk = worst resident assigned to hj ;
for (each successor rz of rk on hj ’s list)

delete the pair (rz, hj);

M = ∅;
while (some hj ∈ H is under-subscribed

and some ri ∈ Bj is not assigned to hj)
ri = first such resident on hj ’s list;
/* hj offers a post to ri */
if (ri is assigned)

hk = M(ri);
M = M\{(ri, hk)};

M = M ∪ {(ri, hj)};
for (each successor hz of hj on ri’s list)

delete the pair (ri, hz);

Fig. 2. RGS algorithm for HR; HGS algorithm for HR

(iii) in Mz, each hospital hj is assigned the first mj members of its GS-list,
where mj = min{cj , g

h
j } and gh

j is the length of hj’s GS-list.

Given any q ∈ R ∪ H , we denote by GS(q) the set of hospitals or residents (as
appropriate) that belong to q’s GS-list in I.

Additional important results concern residents who are unassigned, and hos-
pitals that are under-subscribed, in stable matchings in I. These results are
collectively known as the Rural Hospitals Theorem [12, Section 1.6.4], and may
be stated as follows:

Theorem 2. For a given instance of HR,
(i) each hospital is assigned the same number of residents in all stable matchings;
(ii) exactly the same residents are unassigned in all stable matchings;
(iii) any hospital that is under-subscribed in one stable matching is assigned
precisely the same set of residents in all stable matchings.

3 A Cloned Model

In this section we indicate how an instance of HR may be reduced to an instance
of SMI by “cloning” hospitals. This technique is described in [12, p.38]; see also
[26, pp.131-132]. For completeness, we briefly restate the construction here. Let
I be an instance of HR. We form an instance J of SMI by replacing each hospital
hj ∈ H by cj women in J , denoted by hk

j (1 ≤ k ≤ cj). The preference list of hk
j

in J is identical to that of hj in I. Each resident ri in I corresponds to a man ri

in J , and each hospital hj in ri’s list in I is replaced by h1
j h2

j . . . h
cj

j , in that
order, in J . It may then be shown that the stable matchings in I are in one-one
correspondence with the stable matchings in J .

In order to obtain the GS-lists of I, we can model J using the “conflict ma-
trices” encoding of SMI as presented in [8]. In general AC may be established
in O(edr) time, where e is the number of constraints, d is the domain size, and
r is the arity of each constraint [2]. Due to the cloning technique, the number

160 D.F. Manlove et al.

1. yj,k < yj,k+1 (1 ≤ j ≤ m, 1 ≤ k ≤ cj − 1)

2. yj,k ≥ q ⇒ xi ≤ p (1 ≤ j ≤ m, 1 ≤ k ≤ cj , 1 ≤ q ≤ lhj)

3. xi �= p ⇒ yj,k �= q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

4. (xi ≥ p ∧ yj,k−1 < q) ⇒ yj,k ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

5. yj,cj < q ⇒ xi �= p (1 ≤ j ≤ m, cj ≤ q ≤ lhj)

Fig. 3. Constraints for the CSP model of an HR instance

of women in J is
∑m

j=1 cj = O(cm), where c = max{cj : hj ∈ H}. Given the
construction of the encoding in J [8], it follows that e = O(nmc), d = O(n + m)
and r = 2, so that the time and space complexities for finding the GS-lists in I
using the cloned model are O((n + m)4c) and O((nmc)2) respectively.

4 A Direct CSP-Based Model

We now present a direct CSP encoding of an HR instance that avoids cloning.
Let I be an instance of HR. For ri ∈ R and hj ∈ H , we use the terminology ri

applies (or is assigned) to hj’s kth post (1 ≤ k ≤ cj) in the case that hj prefers
exactly k − 1 members of M(hj) to ri. Also given a matching M , we denote the
resident who is assigned to hj’s kth post in M by Mk(hj) (1 ≤ k ≤ |M(hj)|).

We construct a CSP instance J with variables X = {x1, . . . , xn} and Y =
{yj,k : 1 ≤ j ≤ m ∧ 0 ≤ k ≤ cj}, whose domains are initially defined as follows:

dom(xi) = {1, 2, . . . , lri } ∪ {m + 1} (1 ≤ i ≤ n)
dom(yj,0) = {0} (1 ≤ j ≤ m)
dom(yj,k) = {k, k + 1, . . . , lhj } ∪ {n + k} (1 ≤ j ≤ m ∧ 1 ≤ k ≤ cj).

For the xi variables (1 ≤ i ≤ n), the value m + 1 corresponds to the case that
ri’s GS-list is empty, whilst the remaining values correspond to the ranks of
preference list entries that belong to the GS-lists. A similar meaning applies
to the yj,k variables (1 ≤ j ≤ m, 1 ≤ k ≤ cj), except that the value n + k
corresponds to the case that hj’s GS-list contains fewer than k entries.

More specificially, if min(dom(xi)) ≥ p (1 ≤ p ≤ lri), then during the RGS
algorithm, ri applies to his pth-choice hospital or worse, so that in M0, either ri

is assigned to such a hospital or is unassigned. Similarly if max(dom(xi)) ≤ p,
then during the HGS algorithm, ri was offered a post by his pth-choice hospital
or better, so that ri is assigned to such a hospital in Mz.

From the hospitals’ point of view, if min(dom(yj,k)) ≥ q (1 ≤ q ≤ lhj), then
during the HGS algorithm, hj offers its kth post to its qth-choice resident or
worse, so that in Mz, either hj ’s kth post is filled by such a resident, or is
unfilled. Similarly if max(dom(yj,k)) ≤ q, then during the RGS algorithm, some
resident ri applied to hj ’s kth post, where rank(hj , ri) ≤ q, so that hj’s kth post
is filled by ri or better in M0.

A Constraint Programming Approach to the Hospitals / Residents Problem 161

The constraints in J are given in Figure 3 (in the context of Constraints 2-5,
p denotes the rank of hj in ri’s list and q denotes the rank of ri in hj ’s list).
An interpretation of the constraints is now given. Constraint 1 ensures that hj ’s
filled posts are occupied by residents in preference order, and that if post k − 1
is unfilled then so is post k. Constraint 2 states that if hj ’s kth post is filled by
a resident no better than ri or is unfilled, then ri must be assigned to a hospital
no worse than hj . Constraints 3 and 5 reflect the consistency of deletions carried
out by the HGS and RGS algorithms respectively (i.e. if hj is deleted from ri’s
list, then ri is deleted from hj’s list, and vice versa). Finally Constraint 4 states
that if ri is assigned to a hospital no better than hj or is unassigned, and hj ’s
first k − 1 posts are filled by residents better than ri, then hj ’s kth post must be
filled by a resident at least as good as ri.

It turns out that establishing AC in J yields a set of domains that correspond
to the GS-lists in I. To demonstrate this, we define some additional notation.
For each j (1 ≤ j ≤ m), define Sj = {rank(hj , ri) : ri ∈ GS(hj)}. Let dj denote
the number of residents assigned to hospital hj in any stable matching in I. For
each k (1 ≤ k ≤ dj), let qj,k = rank(hj , Mzk

(hj)) and tj,k = rank(hj , M0k
(hj)).

The GS-domains for the variables in J are defined as follows:

dom(xi) =
{

{rank(ri, hj) : hj ∈ GS(ri)}, if GS(ri) �= ∅
{m + 1}, otherwise

dom(yj,k) =
{

{s ∈ Sj : qj,k ≤ s ≤ tj,k}, if 1 ≤ k ≤ dj

{n + k}, if dj + 1 ≤ k ≤ cj .

We prove in [20] (we omit the proof here for space reasons) that, following AC
propagation in J , the domain of each variable is a subset of its GS-domain, and
conversely, the GS-domains are arc consistent in J . Given that AC algorithms
find the unique maximal set of arc consistent domains [2], we therefore have:

Theorem 3. Let I be an instance of HR, and let J be a CSP instance obtained
by the encoding of this section. Then the domains remaining after AC propaga-
tion in J correspond exactly to the GS-lists in I.

For example, in the context of the HR instance given in Figure 1, the GS-domains
for x2, y1,1 and y1,2 are {1, 3, 4}, {1} and {3, 4} respectively. In general, following
AC propagation in J , matchings M0 and Mz may be obtained as follows. Let
xi ∈ X . If xi = m+1, resident ri is unassigned in both M0 and Mz. Otherwise, in
M0 (respectively Mz), ri is assigned to the hospital hj such that rank(ri, hj) = p,
where p = min(dom(xi)) (respectively p = max(dom(xi))).

In the context of the time complexity function for establishing AC as men-
tioned in Section 3, for this encoding we have e = O(Lc) and d = O(n + m)
(recall that L is the total length of the residents’ preference lists in I). The con-
straints shown in Figure 3 may be revised in O(1) time, assuming that upper and
lower bounds for the variables’ domains are maintained throughout propagation.
It follows by [31] that the time complexity for establishing AC in this model is
O(Lc(n + m)). Since the space complexity is O(Lc), the model presented in this
section is more efficient than the cloned model in terms of both time and space.

162 D.F. Manlove et al.

The next result, proved in [20] (we also omit the proof here), states that the
encoding presented above can be used to enumerate all the solutions of I in a
failure-free manner using AC propagation with a value-ordering heuristic.

Theorem 4. Let I be an instance of HR and let J be a CSP instance obtained
by the encoding of this section. Then the following search process enumerates all
solutions in I without repetition and without ever failing due to an inconsistency:

– AC is established as a preprocessing step, and after each branching decision
including the decision to remove a value from a domain;

– if all domains are arc consistent and some variable xi has two or more values
in its domain then search proceeds by setting xi to the minimum value p in
its domain. On backtracking, the value p is removed from the domain of xi;

– when a solution is found, it is reported and backtracking is forced.

5 A Specialised n-Ary Constraint

We now present a specialised n-ary constraint HRN for the Hospitals / Residents
problem. A model based on HRN requires only one constraint for the whole
problem. We assume that this constraint will be processed by an AC5 [31] type
arc consistency algorithm. That is, the algorithm has a stack of calls to revise
constraints, and if a variable v loses a value then a call to all constraints involving
v will be added to the stack along with the removed value.

5.1 Preliminaries

Our model involves a constrained integer variable xi corresponding to each res-
ident ri ∈ R, where the domain values represent ranks, as in Section 4. In
addition, we associate a single constrained integer variable yj corresponding to
each hospital hj ∈ H with similar meanings for the domain values. In this model
only the x variables are search variables, meaning that a solution consists of
a single value being assigned to each x variable, but the y variables may have
multiple values remaining in their associated domains.

We assume that we have the following functions, each being of O(1) complex-
ity, that operate over constrained integer variables:

– getMin(v) delivers the smallest value in dom(v).
– getMax(v) delivers the largest value in dom(v).
– getV alue(v, a) returns the ath smallest value in dom(v), if |dom(v)| < a then

getMax(v) is returned.
– setMax(v, a) removes all values greater than a from dom(v).
– remV al(v, a) removes the value a from dom(v).
– PL(ri, k) returns the kth entry in ri’s preference list.
– swap(a, b) swaps the values of the variables a and b.

A Constraint Programming Approach to the Hospitals / Residents Problem 163

1. init()
2. for i := 1 to n loop
3. apply(i);
4. end loop;
5. for j := 1 to m loop
6. offer(j);
7. end loop;

Fig. 4. Method init

The HRN constraint also requires the following data structures:

– x̌ is an array of n reversible integer variables containing the previous lower
bounds of all x variables. All are initially set to min(x)−1. On backtracking
the values in x̌ are restored by the solver.

– y̌ is an array of m reversible integer variables containing the value that
represents y’s least favourite resident to be offered a post at y. For hospital
hj , y̌j will equal the cth

j lowest value in dom(yj). All are initially set to
min(y) − 1. On backtracking the values in y̌ are restored by the solver.

– post : an m×c matrix of reversible integer variables which stores applications
for hospital posts. Each array element is initialised to ∞ (i.e. the largest
integer). Row postj stores the applications for hospital hj and entry postj,k
stores the kth best application received by hospital hj .

To implement a constraint we require two methods: one that is called at the
head of search to initialise the constraint and one that is called when a value is
removed from a constrained variable. We now give the first of these methods:

The init method (Figure 4) is called at the head of search. Each resident
applies to their favourite hospital (lines 2-4) via the apply(i) function (details
given later), then each hospital makes an offer to their c favourite residents (lines
5-7) via the offer(j) function (details given later).

As HRN constrains two sets of variables we require two different method to
call when a value is removed from one of the variable’s domains. These methods
are given below:

The deltaX method, shown in Figure 5(a), is called when some value a, where
a < m + 1, is removed from dom(xi). The index j of the hospital a represents
is found (line 2), and ri is then removed from the domain of hj (line 3). If
a represents the last hospital ri applied to (line 4), then ri will make a new
application to its new favourite via the apply(i) function (line 5). Note that

1. deltaX(i,a) 1. deltaY(j,a)
2. j := PL(ri, a); 2. i := PL(hj , a);
3. remValue(yj ,rank(hj , ri)); 3. remValue(xi,rank(ri, hj));
4. if a = x̌i then 4. if a ≤ y̌j then
5. apply(i); 5. offer(j);

Fig. 5. (a) Method deltaX. (b) Method deltaY .

164 D.F. Manlove et al.

1. apply(i)
2. for k := x̌i + 1 to min(xi) loop
3. j := PL(ri, k);
4. apply(j,rank(hj , ri));
5. if postj,cj < ∞ then
6. setMax(yj ,postj,cj);
7. end loop;
8. x̌i := min(xi);

1. apply(j,a)
2. for k := 1 to cj loop
3. if postj,k = a then
4. a := n + 1;
5. if postj,k > a then
6. swap(postj,k, a);
7. end loop;

Fig. 6. (a) Function apply(i). (b) Function apply(j, a).

either the deletion on line 3 or an indirect deletion via a call to the apply(i)
function (details given later) could cause a reduction in the domain of some y
variable and thus a call to deltaY will be placed on the call stack.

The deltaY method, shown in Figure 5(b), is called when some value a, where
a < n + 1, is removed from dom(yj). The index i of the resident a represents
is found (line 2) and hj is then removed from the domain of ri (line 3). If a
represents a resident hj that made an offer to (line 4), then hj will make a new
set of offers via the offer(j) function (line 5). Note that either the deletion on
line 3 or an indirect deletion via a call to the offer(j) function (details given
later), could cause a reduction in the domain of some x variable and thus a call
to deltaX . Therefore the propagation of this constraint results from the mutual
recursion between methods deltaX and deltaY .

The apply(i) function of Figure 6(a) is called either at the head of search
(via the init method) or when the lower bound of xi changes (via the deltaX
method). Resident ri will apply to each hospital that it prefers to any other in its
domain, and to which it has not previously applied to (line 2). First the hospital
hj to be applied to is found (line 3), then resident ri makes an application to
hospital hj via a call to the apply(j, a) function(line 4). If cy applications have
been made to hospital hj (line 5) then hj must not consider any resident worse
then its cth

j favourite applicant (line 6). x̌i is then updated with the current lower
bound of xi (line 8). As the runtime of this function is dependent on the number
of domain reductions made since the previous call to this function, it therefore
has O(1) complexity per deletion.

The apply(j, a) function of Figure 6(b) is called only by the apply(i) function
when hospital hj receives an application from its ath choice resident. The hospi-
tal’s preference for this applicant is placed in the list of applicants in ascending
order. If more than cj applications have been received then the worst applicant
will drop off the end of the array and will effectively be removed from the list.
This function runs in O(c) time.

Figure 7 gives the offer(j) function which can be called either at the head of
search (via the init method) or when a resident that was previously offered a
place has been removed from dom(yj) (via the deltaX method). Hospital hj will
offer a post to ri, the cth

j favourite resident still in its domain, and to all other
residents that it prefers to ri to which it has not yet offered a place to. y̌j is then

A Constraint Programming Approach to the Hospitals / Residents Problem 165

1. offer(j)
2. for k := y̌i + 1 to getValue(hj ,cj) loop
3. i := PL(hj , k);
4. setMax(xi,rank(ri, hj))
5. end loop;
6. y̌j := getValue(hj ,cj);

Fig. 7. Function offer(j)

Table 1. Summary of time and space complexities for the HR models of this paper

Model: Cloned CBM HRN

Time: O((n + m)4 c) O(Lc(n + m)) O(Lc)

Space: O((nmc)2) O(Lc) O(nm)

updated to its preference for ri. This function contains one loop which cycles at
most cj times, therefore it runs in O(c) time.

5.2 Complexity

The deltaX and deltaY methods contains no loops, but each calls a function
which runs in O(c) time. Thus deltaX and deltaY both have a complexity of
O(c). The deltaX method can be called at most once for each value in the domain
of an xi variable, and similarly deltaY can be called at most once for each value
in the domain of the yj variable. Therefore we have a time complexity of O(Lc).
Hence the time complexity for the HRN constraint improves those of the models
presented in earlier sections. The space complexity of this encoding is dominated
by the ranking arrays, and is O(nm). However, if preference lists are short we
may economically trade time for space, or use some sparse data structure, or a
hash table to map preferences to indices.

Table 1 summarises the time and space complexities for the HR models in
this paper (the columns refer respectively to the models in Sections 3, 4 and 5).

5.3 Searching for All Solutions

Arc consistency processing on the HRN constraint yields the GS-domains as
defined in Section 4. A search process need only consider the resident variables
(and need not instantiate the hospital variables), following a similar process to
that outlined in Theorem 4.

6 Computational Experience

The three encodings presented in this paper were implemented using the JSolver
toolkit, i.e. the Java version of ILOG Solver, in order to carry out an empirical
analysis. The objective was to compare the runtimes for these models as applied

166 D.F. Manlove et al.

Table 2. Average computation times in seconds to find all solutions to 100 randomly-
generated HR instances with attributes n/m/c

50/13/4 100/20/5 500/63/8 1k/100/10 5k/250/20 20k/550/37 50k/1.2k/42

Cloned 5.84 − − − − − −
CBM 0.24 0.36 1.69 4.75 − − −
HRN 0.12 0.15 0.19 0.22 0.53 1.42 4.2

to randomly-generated and real-world data. Our studies were carried out using a
2.8Ghz Pentium 4 processor with 512 Mb of RAM, running Microsoft Windows
XP Professional and Java2 SDK 1.4.2.6 with an increased heap size of 512 Mb.

Random problem instances were generated with varying number of residents
n, number of hospitals m, capacity c (uniform for each hospital), and a fixed res-
idents’ preference list size of 10. Hence we classify problems via the triple n/m/c.
Instances were generated as follows. First, a uniformly random preference list of
length 10 was produced for each resident, then a preference list was produced
for each hospital by randomly permuting their acceptable residents. A sample
size of 100 was used for each value of n/m/c.

Table 2 shows the mean time in seconds to construct the model and find
all solutions, for the each of the four models applied to random instances with
varying n/m/c attributes. A table entry of − signifies that there was insufficient
space to create the model of that size using the specified encoding. Table 3
shows the time to establish AC (shown as “AC”) and find all solutions (shown
as “ALL”) to three anonymised HR instances arising from SFAS [13]. The first
column indicates n/m/c, where c is the average hospital capacity; also lri ≤ 5 in
each case. (For each instance, the Cloned model ran out of memory.)

The results indicate that the HRN model was typically able to handle larger
problem instances than the other models, and the average runtime was faster
than for the other models in all cases. The HRN model was also applied to
instances as large as 500k/11.8k/85, finding all solutions on average in 35 sec-
onds. As mentioned in the Introduction, instances of the NRMP typically involve
around 31,000 residents and 2,300 hospitals, with residents’ preference lists of
size between 4 and 7 [23]. The HRN model finds all solutions to problems of size
200k/3k/67 in 22 seconds on average. This leads us to believe that Constraint
Programming is indeed a suitable technology for the HR problem.

7 Motivation: Side-Constraints

It is natural to build additional constraints on top of the constraint models of
HR presented in this paper, in order to cope with generalisations of HR for
which the RGS and HGS algorithms are inapplicable. In this section we present
several variants of HR that are either NP-hard or for which no polynomial-
time algorithm is currently known. In the first three cases we suggest additional

A Constraint Programming Approach to the Hospitals / Residents Problem 167

side-constraints that can be added to any of our base models in order to cope with
the more general problem, providing additional motivation for our approach.

Resident-exchange-stable HR. During a previous run of the SFAS matching
scheme, two residents complained that, had they swapped their given hospitals,
they could each have been better off. Such a swap would not have been permitted
by the hospitals, of course, as it would have violated the stability criterion.
However it would be desirable to avoid such a situation arising if possible, and
this leads to the problem of finding a resident-exchange stable matching given
an instance I of HR. This is a stable matching M in I such that there are
no two assigned residents ri, rj such that ri prefers M(rj) to M(ri), and rj

prefers M(ri) to M(rj). It is known that a such a matching need not exist in
I, and indeed the problem of deciding whether such a matching exists in I is
NP-complete [14,21], even if each hospital has capacity 1. For any two residents
ri, rj and for any two hospitals hk, hl such that ri prefers hl to hk and rj prefers
hl to hk, the additional constraint xi = p1 ⇒ xj �= p2 should be added, where
rank(ri, hk) = p1 and rank(rj , hl) = p2.

HR with forbidden pairs. Let F be a set of (resident,hospital) pairs in an
instance I of HR. An adminstrator of a matching scheme may wish to exclude
the pairs in F from any matching. Hence a matching M in I must not include
any member of F , however a pair in F could still form a blocking pair (hence we
cannot simply delete pairs in F from the preference lists). The task is to find a
matching in I that is stable in the usual sense. Clearly a stable matching need not
exist, given an instance of HR with forbidden pairs. However given an instance
of SMI with forbidden pairs, there exists a linear-time algorithm to find a stable
matching or report that none exists [6], and it is straightforward to extend this
algorithm to HR. However no polynomial-time algorithm is currently known for
the problem of finding a matching M in I (in the usual sense) with the fewest
number of forbidden pairs. One possibility for modelling this problem is to add
new variables T = {ti,p : 1 ≤ i ≤ n ∧ 1 ≤ p ≤ lri }, each with domain {0, 1}, and
a constraint xi = p ⇒ ti,p = 1, for each (ri, hj) ∈ F , where rank(ri, hj) = p,
and then minimise the sum of the values of the variables in T .

HR with groups. An extension of HR that has practical relevance arises when
residents may form groups, and may decide that they are only prepared to be
matched to a given hospital if the whole group is matched to it. More formally,

Table 3. Time taken to establish AC and find all solutions to three SFAS instances

Solutions CBM HRN

AC ALL AC ALL

502/41/13.2 1 1.61 1.64 0.17 0.17

510/43/11.5 1 1.64 1.7 0.17 0.17

245/34/3.9 1 0.26 0.26 0.12 0.12

168 D.F. Manlove et al.

each hospital hj ∈ H may have one or more associated groups Gj ⊆ R. A
matching M must satisfy the additional property that if (ri, hj) ∈ M for some
ri ∈ Gj , then (rk, hj) ∈ M for all rk ∈ Gj . No polynomial-time algorithm for this
problem is currently known. However this variant can be modelled as follows.
For any group Gj = {ri1 , . . . , rik

}, add the constraint xia = pia ⇒ xib
= pib

(1 ≤ a �= b ≤ k) where rank(ria , hj) = pia and rank(rib
, hj) = pib

. A particular
case of this problem is the Hospitals / Residents problem with Couples (HRC),
described below.

Other generalisations of HR. The Hospitals / Residents problem with Ties
(HRT) arises when ties are permitted in the preference lists of hospitals and/or
residents. For example, a popular hospital may be indifferent among several
applicants. The SFAS scheme [13] already permits ties in the hospitals’ lists.
However it is known [18] that, in the presence of ties, stable matchings can be
of different sizes, and the problem of finding a maximum stable matching is NP-
hard, even for very restricted instances of SMI with ties. It has already been
demonstrated [9,10] that the earlier encodings of [8] can be extended to the case
where preference lists in a given SMI instance may involve ties. We have begun
to consider the corresponding extension of the models presented in Sections 4
and 5 to the HRT case, and further details will appear elsewhere.

HRC (in which couples submit joint preference lists over pairs of hospitals) is
another generalisation of HR. Again it is possible that an instance need not admit
a stable matching (where the stability definition is extended to the couples case),
and the problem of deciding whether such a matching exists is NP-complete [24].
A constraint-based solution to this problem is motivated by the NRMP, which
permits couples to submit joint preference lists.

8 Conclusions and Future Work

In this paper we have presented three CP models of an HR instance. The empir-
ical results for the models as presented in Section 6 are broadly in line with what
may be expected, given the summary of time and space complexities presented
in Table 1. Our results indicate that, as is the case for SMI [8], CSP encodings
of HR are “tractable”, a notion that has been explored in detail by Green and
Cohen [11]. However it remains open as to whether there exists a CSP encoding
of HR that gives rise to the GS-lists, for which AC may be established in O(L)
time and using O(nm) space. The time complexity of O(L) is optimal, since SM
is a special case of HR, and a lower bound of Ω(L) holds for the problem of
finding a stable matching, given an instance of SM [22].

Acknowledgement

The authors are grateful to ILOG SA for providing access to the JSolver toolkit
via an Academic Grant Licence.

A Constraint Programming Approach to the Hospitals / Residents Problem 169

References

1. B. Aldershof, O.M. Carducci, and D.C. Lorenc. Refined inequalities for stable
marriage. Constraints, 4:281–292, 1999.

2. C. Bessière and J-C. Régin. Arc consistency for general constraint networks: Pre-
liminary results. In Proceedings of IJCAI ’97, vol. 1, pp. 398–404, 1997.

3. I. Brito and P. Meseguer. Distributed stable matching problems. In Proceedings
of CP ’05, LNCS vol. 3705, pp. 152–166. Springer, 2005.

4. I. Brito and P. Meseguer. Distributed stable matching problems with ties and
incomplete lists. In Proceedings of CP ’06, LNCS vol. 4204, pp. 675–679. Springer,
2006.

5. Canadian Resident Matching Service. How the matching algorithm works. Web
document available at http://www.carms.ca/matching/algorith.htm.

6. V.M.F. Dias, G.D. da Fonseca, C.M.H. de Figueiredo and J.L. Szwarcfiter. The sta-
ble marriage problem with restricted pairs. Theoretical Computer Science, 306(1-
3):391–405, 2003.

7. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

8. I.P. Gent, R.W. Irving, D.F. Manlove, P. Prosser, and B.M. Smith. A constraint
programming approach to the stable marriage problem. In Proceedings of CP ’01,
LNCS vol. 2239, pp. 225–239. Springer, 2001.

9. I.P. Gent and P. Prosser. An empirical study of the stable marriage problem with
ties and incomplete lists. In Proceedings of ECAI ’02, pp. 141–145. IOS Press, 2002.

10. I.P. Gent and P. Prosser. SAT encodings of the stable marriage problem with ties
and incomplete lists. In Proceedings of SAT ’02, pp. 133–140, 2002.

11. M.J. Green and D.A. Cohen. Tractability by approximating constraint languages.
In Proceedings of CP ’03, LNCS vol. 2833, pp. 392–406. Springer, 2003.

12. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

13. R.W. Irving. Matching medical students to pairs of hospitals: a new variation on
a well-known theme. In Proceedings of ESA ’98, LNCS vol. 1461, pp. 381–392.
Springer, 1998.

14. R.W. Irving The Man-Exchange Stable Marriage Problem. Technical Report TR-
2004-177, University of Glasgow, Department of Computing Science, 2004.

15. D.E. Knuth. Mariages Stables Les Presses de L’Université de Montréal, 1976.
16. I.J. Lustig and J. Puget. Program does not equal program: constraint programming

and its relationship to mathematical programming. Interfaces, 31:29–53, 2001.
17. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8:99–118, 1977.
18. D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants

of stable marriage. Theoretical Computer Science, 276 (1-2) : 261–279, 2002.
19. D.F. Manlove and G. O’Malley. Modelling and solving the stable marriage problem

using constraint programming. In Proceedings of the Fifth Workshop on Modelling
and Solving Problems with Constraints, held at IJCAI ’05, pp. 10–17, 2005.

20. D.F. Manlove, G. O’Malley, P. Prosser and C. Unsworth. A Constraint Program-
ming Approach to the Hospitals / Residents Problem. Technical Report TR-2007-
236, University of Glasgow, Department of Computing Science, 2007.

21. E. McDermid, C. Cheng and I. Suzuki. Hardness results on the man-exchange
stable marriage problem with short preference lists. Information Processing Letters,
101:13–19, 2007.

170 D.F. Manlove et al.

22. C. Ng and D.S. Hirschberg. Lower bounds for the stable marriage problem and its
variants. SIAM Journal on Computing, 19:71–77, 1990.

23. National Resident Matching Program. About the NRMP. Web document available
at http://www.nrmp.org/about_nrmp/how.html.

24. E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–
304, 1990.

25. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

26. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis. Cambridge University Press, 1990.

27. M.-C. Silaghi, M. Zanker and R. Barták. Desk-mates (stable matching) with pri-
vacy of preferences, and a new distributed CSP framework. In Proceedings of the
CP 2004 workshop on CSP Techniques with Immediate Application (CSPIA), pp.
83–96, 2004.

28. M.-C. Silaghi, A. Abhyankar, M. Zanker and R. Barták. Desk-mates (stable match-
ing) with privacy of preferences, and a new distributed CSP framework. In Pro-
ceedings of FLAIRS 2005, pp. 671-677. AIII Press, 2005.

29. C. Unsworth and P. Prosser. An n-ary constraint for the stable marriage problem.
In Proceedings of the Fifth Workshop on Modelling and Solving Problems with
Constraints, held at IJCAI ’05, pp. 32–38, 2005.

30. C. Unsworth and P. Prosser. A specialised binary constraint for the stable marriage
problem. In Proceedings of SARA ’05, LNAI vol. 3607, pp. 218-233. Springer, 2005.

31. P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

Best-First AND/OR Search for 0/1 Integer Programming

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{radum,dechter}@ics.uci.edu

Abstract. AND/OR search spaces are a unifying paradigm for advanced algo-
rithmic schemes for graphical models. The main virtue of this representation is
its sensitivity to the structure of the model, which can translate into exponential
time savings for search algorithms. In this paper we introduce an AND/OR search
algorithm that explores a context-minimal AND/OR search graph in a best-first
manner for solving 0/1 Integer Linear Programs (0/1 ILP). We also extend to the
0/1 ILP domain the depth-first AND/OR Branch-and-Bound search with caching
algorithm which was recently proposed by [1] for solving optimization tasks in
graphical models. The effectiveness of the best-first AND/OR search approach
compared to depth-first AND/OR Branch-and-Bound search is demonstrated on
a variety of benchmarks for 0/1 ILPs, including instances from the MIPLIB li-
brary, real-world combinatorial auctions, random uncapacitated warehouse loca-
tion problems and MAX-SAT instances.

1 Introduction

In constraint optimization the goal is to minimize (or maximize) an objective function,
subject to a set of constraints on the possible values of a set of independent decision
variables. An important class of constraint optimization problems are the 0/1 Integer
Linear Programming problems (0/1 ILP) [2] where the objective is to optimize a linear
function of binary integer variables, subject to a set of linear equality or inequality
constraints defined on subsets of variables. The classical approach to solving 0/1 ILPs
is the Branch-and-Bound method [3] which maintains the best solution found so far,
while discarding partial solutions which cannot improve on the best.

The AND/OR search space for graphical models [4] is a framework for search that
is sensitive to the independencies in the model, often resulting in exponentially reduced
complexities. It is based on a pseudo-tree that captures independencies in the graphical
model, resulting in a search space exponential in the depth of the pseudo-tree, rather
than in the number of variables.

The AND/OR Branch-and-Bound search (AOBBt) was first introduced by [5] as a
Branch-and-Bound algorithm that explores an AND/OR search tree in a depth-first
manner for solving optimization tasks in graphical models. The AND/OR Branch-and-
Bound search with caching algorithm (AOBBg) due to [1] improves AOBBt by allowing
the algorithm to save previously computed results and retrieve them when the same
subproblems are encountered again. These algorithms are restricted to a static vari-
able ordering determined by the underlying pseudo-tree. More recently, [6,7] proposed
several extensions of AOBBt that incorporate dynamic variable ordering heuristics and

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 171–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 R. Marinescu and R. Dechter

explore dynamic AND/OR search trees. Two such extensions, AND/OR Branch-and-
Bound with Partial Variable Ordering (AOBBt+PVO) and AND/OR Branch-and-Bound
with Full Dynamic Variable Ordering (AOBBt+DVO) were shown to outperform signif-
icantly the static AOBBt algorithm as well as state-of-the-art classic OR Branch-and-
Bound algorithms on various domains, including 0/1 ILPs.

In this paper we present and evaluate a new AND/OR search algorithm, that explores
an AND/OR search graph in a best-first manner for solving 0/1 ILPs. Under conditions
of admissibility and monotonicity of the guiding heuristic function, best-first search
is known to expand the minimal number of nodes, at the expense of using additional
memory [8]. In practice, these savings in number of nodes may often translate into
impressive time savings as well. Since variable selection can have a dramatic impact
on search performance, we also introduce a best-first AND/OR search algorithm that
explores an AND/OR search tree, rather than a graph, and combines the AND/OR de-
composition principle with dynamic variable selection heuristics, in a similar fashion as
the dynamic AND/OR Branch-and-Bound algorithms described in [6,7]. We also adapt
the static AOBBg algorithm for solving 0/1 ILPs.

We demonstrate empirically the efficiency of our best-first AND/OR search approach
compared to depth-first AND/OR Branch-and-Bound search on several benchmarks for
0/1 ILP, including test instances from the MIPLIB library, combinatorial auctions sim-
ulating radio spectrum allocation, random uncapacitated warehouse location problems
and MAX-SAT instances from the SATLIB library.

The paper is organized as follows. In Section 2 we present background on 0/1 ILP
and AND/OR search spaces. In Section 3 we introduce the best-first AND/OR search
algorithm as well as the extension to 0/1 ILP of the depth-first AND/OR Branch-and-
Bound search with caching. In Section 4 we present a best-first AND/OR search al-
gorithm that incorporates dynamic variable orderings. Section 5 shows our empirical
evaluation and Section 6 concludes.

2 Background

2.1 Integer Linear Programming

A Linear Program (LP) consists of a set of continuous variables and a set of linear con-
straints (equalities or inequalities). The goal is to optimize a global linear cost function
subject to the constraints. One of the standard forms of a linear program is:

min{c�x | Ax ≤ b, x ≥ 0} (1)

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and x ∈ R

n. Here c represents the cost vector and
x is the vector of decision variables. The vector b and the matrix A define the m linear
constraints. Linear programs are usually solved by Dantzig’s SIMPLEX method [9].

An Integer Linear Programming (ILP) problem is a linear program where all the
decision variables are constrained to have integer values at the optimal solution. An
important special case is a decision variable xi that is integer with 0 ≤ xi ≤ 1. This
forces xi to be either 0 or 1 at the solution. Variables like xi are called 0/1 or binary
integer variables. A 0/1 Integer Linear Programming problem is an ILP where all the

Best-First AND/OR Search for 0/1 Integer Programming 173

{ }1,0,,,,,

13

242

2352

3123

 :subject to

865237 :minimize

∈
≤+−

≤−+
−≤−+−

≤+−

+−+−+=

FEDCBA

FEA

EBA

DCB

CBA

FEDCBAz

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D

1

0

1

E

F F

0 1 0 1

0 1

C

D

0 1

0

1

B

0

E

F F

0 0 1

0 1

C

D

1

0

1

E

F

0 1

1

C

D

0 1

0

(c)

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1

AND 0 1

C

D

0 1

0

1

EC

D

0

1

B

0

E

F F

0 1

C

1

EC

(d)

Fig. 1. The AND/OR search space

decision variables are binary. 0/1 ILPs can formulate many practical problems such as
capital budgeting [10], cargo loading [11], processor allocation in distributed systems
[12], combinatorial auctions [13,14] or maximum satisfiability problems [15,16].

With every 0/1 ILP instance we can associate an interaction graph G which has a
node for each variable and connects any two nodes whose variables appear in the scope
of the same constraint. The induced graph of G relative to an ordering d of its variables,
denoted G∗(d), is obtained by processing the nodes in reverse order of d. For each node
all its earlier neighbors are connected, including neighbors connected by previously
added edges. Given a graph and an ordering of its nodes, the width of a node is the
number of edges connecting it to nodes lower in the ordering. The induced width of a
graph, denoted w∗(d), is the maximum width of nodes in the induced graph.

In the remainder, we will consider the minimization of a 0/1 ILP instance defined
by a linear objective function z =

∑n
i=1 ciXi subject to m linear constraints F =

{F1, ..., Fm}, over n decision variables X = {X1, ..., Xn} with binary domains D =
{D1, ..., Dn}. We use the notation 〈X , D, F , z〉 to refer to any 0/1 ILP instance.

2.2 AND/OR Search Spaces for 0/1 Integer Linear Programs

The common way of solving 0/1 Integer Linear Programs is by search, namely to in-
stantiate variables one at a time following a static or dynamic variable ordering. In the
simplest case, this process defines an OR search tree, whose nodes represent states in the
space of partial assignments. This search space does not capture independencies that ap-
pear in the structure of the problem. To remedy this problem an AND/OR search space
was recently introduced in the context of general graphical models [4]. The AND/OR
search space is defined using a backbone pseudo-tree [17].

Definition 1 (pseudo-tree). Given an undirected graph G = (V, E), a directed rooted
tree T = (V, E′) defined on all its nodes is called pseudo-tree if any arc of G which is
not included in E′ is a back-arc, namely it connects a node to an ancestor in T .

We will next specialize the AND/OR search space for a 0/1 ILP which is a special type
of a graphical model.

AND/OR Search Trees. Given a 0/1 ILP instance 〈X , D, F , z〉, its interaction graph G
and a pseudo-tree T of G, the associated AND/OR search tree ST has alternating levels
of OR nodes and AND nodes. The OR nodes are labeled by Xi and correspond to the

174 R. Marinescu and R. Dechter

variables. The AND nodes are labeled by 〈Xi, xi〉 and correspond to value assignments
in the domains of the variables. The structure of the AND/OR tree is based on the
underlying pseudo-tree T of G. The root of the AND/OR search tree is an OR node,
labeled with the root of T .

The children of an OR node Xi are AND nodes labeled with assignments 〈Xi, xi〉,
consistent along the path from the root, path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node 〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . Semantically, the OR states represent alternative ways of solving the problem,
whereas the AND states represent problem decomposition into independent subprob-
lems, all of which need be solved. When the pseudo-tree is a chain, the AND/OR search
tree coincides with the regular OR search tree.

A solution tree SOLST of ST is an AND/OR subtree such that: (i) it contains the
root of ST ; (ii) if a nonterminal AND node n ∈ ST is in SOLST then all of its children
are in SOLST ; (iii) if a nonterminal OR node n ∈ ST is in SOLST then exactly one of
its children is in SOLST .

Example 1. For illustration consider the 0/1 ILP with 6 decision variables A, B, C, D, E,
F and 4 linear constraints F1(A, B, C), F2(B, C, D), F3(A, B, E), F4(A, E, F) from
Figure 1(a). The objective function to be minimized is z = 7A+B −2C +5D−6E +
8F . The pseudo-tree arrangement of the interaction graph, together with the back-arcs
(dotted lines) are given in Figure 1(b). Figure 1(c) shows the corresponding AND/OR
search tree.

Arc Labels and Node Values. The arcs from OR nodes Xi to AND nodes 〈Xi, xi〉 in
the AND/OR search tree ST are annotated by labels derived from the objective function.

Definition 2 (label). Given a 0/1 ILP instance with objective function z =
∑n

i=1 ciXi

and a corresponding AND/OR search tree ST , the label l(n, m) of the arc from the OR
node n = Xi to the AND node m = 〈Xi, xi〉 is defined as l(n, m) = ci · xi.

Given a labeled AND/OR search tree, each node can be associated with a value [4].

Definition 3 (value). The value v(n) of a node n ∈ ST is defined recursively as fol-
lows: (i) if n = 〈Xi, xi〉 is a terminal AND node then v(n) = 0; (ii) if n = 〈Xi, xi〉
is an internal AND node then v(n) =

∑
m∈succ(n) v(m); (iii) if n = Xi is an internal

OR node then v(n) = minm∈succ(n)(l(n, m)+ v(m)), where succ(n) are the children
of n in ST .

It is easy to see that the value v(n) of a node in the AND/OR search tree ST is the
minimal cost solution to the subproblem rooted at n, subject to the current variable
instantiation along the path from the root to n. If n is the root of ST , then v(n) is the
minimal cost solution to the initial problem [6].

Clearly, the AND/OR search tree can be traversed to compute each node’s value
either by a depth-first or best-first search algorithm.

AND/OR Search Graphs. The AND/OR search tree may contain nodes that root iden-
tical subtrees (in particular, subproblems with identical optimal solutions). These are
called unifiable. When unifiable nodes are merged, the search tree becomes a graph and
its size becomes smaller. Some unifiable nodes can be identified based on their contexts.

Best-First AND/OR Search for 0/1 Integer Programming 175

Algorithm 1. AOBBg

Data: A 0/1 ILP P = (X ,D,F, z), pseudo-tree T , root s.
Result: Minimal cost solution to P .

1. Create a list OPEN, consisting solely of the start node s. Set v(s) = ∞.
2. until s is labeled SOLVED, do:

(a) Remove the first node n from OPEN and add it to CLOSED.
(b) If n is an AND node, then set v(n) = cache(n).
(c) Try to prune the subtree below n, as follows: if for some ancestor m of n in CLOSED, fh(m) ≥ v(m),
then set v(n) = ∞ and continue from step (e).
(d) Expand node n generating all its successor nodes ni . For each new node ni compute h(ni); if ni is an
AND node then set v(ni) = 0, else if ni is an OR node then set v(ni) = ∞; add ni on top of OPEN.
(e) Create a set S. If n has no successors then label n SOLVED and add it to S.
(f) until S is empty, do:

i. Remove the first node m from S.
ii. Update the value v(p) of the parent p of m as follows:

A. if p is an AND node then v(p) = v(p) + v(m).
B. if p is an OR node then v(p) = min(v(p), l(p, m) + v(m)). Save the AND value v(m) in cache
by setting cache(m) = v(m), if v(m) �= ∞.

iii. Remove m from the successors of p. If p has no successors left, label p SOLVED and add it to S. Remove
m from CLOSED.

3. return v(s).

Definition 4 (context). Given a 0/1 ILP instance and the corresponding AND/OR
search tree ST relative to a pseudo-tree T , the context of any AND node 〈Xi, xi〉 ∈ ST ,
denoted by context(Xi), is defined as the set of ancestors of Xi in T , including Xi,
that are connected to descendants of Xi.

It is easy to verify that any two nodes having the same context represent the same
subproblem. Therefore, we can solve PXi , the subproblem rooted at Xi, once and use
its optimal solution whenever the same subproblem is encountered again.

The context-minimal AND/OR search graph, denoted by GT , is obtained by merging
all the AND nodes that have the same context. It can be shown [4] that the size of the
largest context is bounded by the induced width w∗ of the interaction graph, extended
with the pseudo-tree extra arcs, over the ordering given by the depth-first traversal of T
(i.e. induced width of the pseudo-tree). Therefore,

Theorem 1 (complexity). The complexity of any search algorithm traversing a context-
minimal AND/OR search graph is time and space O(exp(w∗)), where w∗ is the induced
width of the underlying pseudo-tree [4].

Example 2. Consider the context-minimal AND/OR search graph in Figure 1(d) of
the pseudo-tree from Figure 1(b). Its size is far smaller that that of the AND/OR tree
from Figure 1(c) (16 nodes vs. 36 nodes). The contexts of the nodes can be read from
the pseudo-tree, as follows: context(A) = {A}, context(B) = {B,A}, context(C) =
{C,B}, context(D) = {D}, context(E) = {E,A} and context(F) = {F}.

3 Algorithms Exploring the Context-Minimal AND/OR Graph

In this section we introduce two algorithms that explore a context-minimal AND/OR
search graph in either a depth-first or best-first manner for solving optimization prob-
lems from the class of 0/1 ILP. First, we present the depth-first AND/OR Branch-and-
Bound search algorithm (AOBBg) which extends the 0/1 ILP algorithm presented in [6]

176 R. Marinescu and R. Dechter

for searching AND/OR trees to searching AND/OR graphs. The algorithm specializes
recent AND/OR graph search algorithms for general constraint optimization problems
described in [1] to the 0/1 ILP case.

3.1 Depth-First AND/OR Branch-and-Bound Search

The AND/OR Branch-and-Bound search algorithm, denoted by AOBBg, that explores
the context-minimal AND/OR search graph in a depth-first manner is described in Al-
gorithm 1. Its pruning strategy is similar to that of the Branch-and-Bound algorithm
searching AND/OR trees developed in [6]. Specifically, each node n along the path
from the root has associated a static heuristic function h(n) underestimating v(n) that
can be computed efficiently by solving the linear relaxation (i.e. relaxing the integrality
restrictions) of the subproblem rooted at n. The algorithm also improves the heuristic
function dynamically during search. The dynamic heuristic function fh(n) is computed
based on the search space below n that has already been explored, as described in [6],
and is used to prune unpromising portions of the search space that cannot improve the
best solution found so far.
AOBBg is restricted to a static variable ordering determined by the underlying pseudo-

tree and explores the context-minimal AND/OR search graph via full caching. The al-
gorithm saves previously computed results and retrieves them when the same nodes are
encountered again, during search. A simple way of implementing the caching mecha-
nism is to have a cache table for each variable Xk recording its context. Specifically, let
us assume that the context of Xk is context(Xk) = {Xi, ..., Xk}. A cache table entry
corresponds to a particular instantiation {xi, ..., xk} of the variables in context(Xk)
and records the optimal cost solution to the subproblem PXk

.
However, some tables might never get cache hits. These are called dead-caches

[18,1]. In the context-minimal AND/OR search graph, dead-caches appear at nodes that
have only one incoming arc. AOBBg needs to record only nodes that are likely to have
additional incoming arcs, and some of these nodes can be determined by inspecting the
pseudo-tree. Namely, if the context of a node includes that of its parent, then there is
no need to store anything for that node, because it would be a dead-cache. For exam-
ple, node B in the AND/OR search graph from Figure 1(d) is a dead-cache because its
context includes the context of its parent A in the pseudo-tree from Figure 1(b).

If the memory requirements are prohibitive, rather than using full caching, AOBBg

can be modified to use a memory bounded caching scheme that saves only those nodes
whose context size can fit in the available memory, as suggested by [1].

3.2 Best-First AND/OR Search

The context-minimal AND/OR search graph can be traversed in a best-first rather than
depth-first manner to compute the optimal cost solution to a 0/1 ILP. It is known that
under conditions of admissibility and monotonicity of the guiding heuristic function,
best-first search algorithms are guaranteed to expand the minimal number of nodes, at
the expense of using additional memory [8].

Best-First AND/OR Search for 0/1 Integer Programming 177

Algorithm 2. AOBFg

Data: A 0/1 ILP P = (X ,D,F, z), pseudo-tree T , root s.
Result: Minimal cost solution to P .

1. Create explicit graph G′
T , consisting solely of the start node s. Set v(s) = h(s).

2. until s is labeled SOLVED, do:
(a) Compute a partial solution tree by tracing down the marked arcs in G′

T from s and select any nonterminal
tip node n.
(b) Expand node n and add any new successor node ni to G′

T . For each new node ni set v(ni) = h(ni).
Label SOLVED any of these successors that are terminal nodes.
(c) Create a set S containing node n.
(d) until S is empty, do:

i. Remove from S a node m such that m has no descendants in G′
T still in S.

ii. Revise the value v(m) as follows:
A. if m is an AND node then v(m) =

�
mj∈succ(m) v(mj). If all the successor nodes are labeled

SOLVED, then label node m SOLVED.
B. if m is an OR node then v(m) = minmj ∈succ(m)(l(m, mj) + v(mj)) and mark the arc through
which this minimum is achieved. If the marked successor is labeled SOLVED, then label m SOLVED.

iii. If m has been marked SOLVED or if the revised value v(m) is different than the previous one, then add to
S all those parents of m such that m is one of their successors through a marked arc.

3. return v(s).

Our best-first AND/OR graph search algorithm, denoted by AOBFg, that traverses
the context-minimal AND/OR search graph is described in Algorithm 2. It specializes
Nillson’s AO∗ algorithm [19] to solving 0/1 ILPs and interleaves forward expansion of
the best partial solution tree with a cost revision step that updates estimated node values.
First, a top-down, graph-growing operation (step 2.a) finds the best partial solution
tree by tracing down through the marked arcs of the explicit AND/OR search graph
G′

T . These previously computed marks indicate the current best partial solution tree
from each node in G′

T . One of the nonterminal leaf nodes n of this best partial solution
tree is then expanded, and a static heuristic estimate h(ni) is assigned to its successors
(step 2.b). The successors of an AND node n = 〈Xj , xj〉 are Xj’s children in the
pseudo-tree, while the successors of an OR node n = Xj correspond to Xj’s domain
values. Notice that when expanding an OR node, the algorithm does not generate AND
children that are already present in the explicit search graph G′

T . All these identical
AND nodes in G′

T are easily recognized based on their contexts.
The second operation in AOBFg is a bottom-up, cost revision, arc marking, SOLVE-

labeling procedure (step 2.c). Starting with the node just expanded n, the procedure
revises its value v(n) (using the newly computed values of its successors) and marks the
outgoing arcs on the estimated best path to terminal nodes. This revised value is then
propagated upwards in the graph. The revised cost v(n) is an updated estimate of the
cost of an optimal solution to the subproblem rooted at n. If we assume the monotone re-
striction on h, the algorithm considers only those ancestors that root best partial solution
subtrees containing descendants with revised values (step 2.d.iii). The optimal
cost solution to the initial problem is obtained when the root node s is solved.

The static heuristic function h(n) is obtained by solving the linear relaxation of
the subproblem Pn rooted at node n in the search graph, subject to the current vari-
able instantiation of the best partial solution tree. If Pn is infeasible then we assume
h(n) = ∞. The bottom-up operation of AOBFg will then propagate this high cost
upward, which eliminates any chances that a subtree containing this node might be
selected as an estimated best solution subtree.

178 R. Marinescu and R. Dechter

4 Dynamic Variable Orderings

It is well known that variable selection may influence dramatically search performance.
Recent work by [6,7] showed how several dynamic variable orderings affect depth-first
Branch-and-Bound search on AND/OR trees. One extension, called AND/OR Branch-
and-Bound with Partial Variable Ordering (AOBBt+PVO) that orders dynamically the
variables forming chains in the pseudo-tree, was shown to outperform significantly sta-
tic AND/OR as well as state-of-the-art OR Branch-and-Bound solvers for general COPs
and in particular for 0/1 ILPs [6,7]. Next, we extend the idea of partial variable ordering
to best-first search on AND/OR trees.

Partial Variable Orderings. AOBFg described in the previous section is restricted to a
static variable ordering determined by the pseudo-tree arrangement. The mechanism of
identifying unifiable AND nodes based solely on their contexts is hard to extend when
variables are instantiated in a different order than that dictated by the pseudo-tree, and
therefore it cannot be used to accommodate dynamic variable orderings. If we explore
the AND/OR search tree we can use dynamic variable orderings while exploring the
AND/OR search tree in a best-first manner.

Best-first AND/OR search with Partial Variable Ordering (AOBFt+PVO) traverses
an AND/OR search tree by combining the static graph-based problem decomposition
given by a pseudo-tree with a dynamic semantic variable selection heuristic. We illus-
trate the idea with an example. Consider the pseudo-tree from Figure 1(a) inducing the
following variable group ordering: {A,B}, {C,D}, {E,F}; which dictates that variables
{A,B} should be considered before {C,D} and {E,F}. Variables in each group can be
dynamically ordered based on a second, independent semantic heuristic (e.g., min re-
duced cost, min pseudo cost, etc.). Notice that after variables {A,B} are instantiated, the
problem decomposes into two independent components that can be solved separately.

5 Experiments

In this section we evaluate empirically the performance of the best-first AND/OR search
algorithms on several benchmarks for 0/1 ILP including problem instances from the
MIPLIB library1, combinatorial auctions, uncapacitated warehouse location problems
and MAX-SAT problems. All our experiments were done on a 2.4GHz Pentium IV with
2GB of RAM, running Windows XP.

We consider two classes of best-first search algorithms exploring an AND/OR search
tree and using either a static variable ordering (SVO) or a partial variable ordering
(PVO). The algorithms are denoted by AOBFt+SVO and AOBFt+PVO, respectively.
We also consider two classes of depth-first and best-first search algorithms travers-
ing context-minimal AND/OR search graphs, both restricted to a static variable or-
dering and denoted by AOBBg+SVO and AOBFg+SVO, respectively. For comparison
we include results obtained with two depth-first AND/OR Branch-and-Bound algo-
rithms without caching developed recently in [6] and denoted by AOBBt+SVO and
AOBBt+PVO, respectively. The guiding heuristic of the AND/OR search algorithms is

1 http://miplib.zib.de/miplib2003.php

Best-First AND/OR Search for 0/1 Integer Programming 179

Table 1. Results for MIPLIB problem instances

miplib n w∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
p0033 33 19 time 5.34 0.31 0.27 0.19 0.39 0.28 0.33

15 21 nodes 15,832 438 403 339 281 428 374
p0040 40 19 time 0.08 0.11 0.11 0.11 0.09 0.27 0.18

23 23 nodes 134 113 100 113 100 142 121
p0201 201 120 time 98.21 91.36 71.62 90.52 76.05 84.36 91.45

133 142 nodes 23,742 15,187 10,387 15,130 10,387 9,653 8,261
lseu 89 57 time 282.27 89.04 35.44 86.88 36.50 44.85 36.45

28 68 nodes 386,122 70,322 21,396 63,906 19,692 30,202 18,383

computed by solving the linear relaxation of the current subproblem. We used the SIM-
PLEX implementation from the open-source lp solve2 library. The guiding pseudo-
trees used by the AND/OR algorithms were constructed using the hypergraph partition-
ing heuristic described in [6].

To ensure a fair comparison of the 0/1 ILP algorithms we used as reference the ILP
Branch-and-Bound solver (BB) available in the lp solve library and did not rely on
a commercial ILP solver like CPLEX3, whose excellent performance is determined, in
many cases, by its powerful nogood recording mechanism (e.g., Gomoroy fractional
cuts). For the MAX-SAT instances we compare, in addition, with three specialized
solvers: MaxSolver [16], a DPLL-based algorithm that uses a 0/1 non-linear integer
formulation of the MAX-SAT problem, toolbar3 [20], a classic OR Branch-and-
Bound algorithm that solves MAX-SAT as a Weighted CSP problem, and PBS [21],
a DPLL-based solver capable of propagating and learning pseudo-boolean constraints
as well as clauses. MaxSolver and toolbar3 were shown to perform very well on
random MAX-SAT instances with high graph connectivity [20], whereas PBS exhibits
better performance on relatively sparse MAX-SAT instances [16].

The algorithms BB, AOBBt+PVO and AOBFt+PVO used a dynamic semantic vari-
able selection heuristic based on reduced costs (i.e. dual values) [2]. Specifically, the
next fractional variable to instantiate has the smallest reduced cost. Ties are broken
lexicographically.

We report the average effort, as CPU time (in seconds) and number of nodes visited
(which is equivalent to the number of times the SIMPLEX routine was called to solve
the linear relaxation of the current subproblem), required for proving optimality of the
solution. We also record the number of variables (n), the number of constraints (c), the
depth of the pseudo-trees (h) and the induced width of the graphs (w∗) obtained for the
test instances. The best performance points are highlighted.

5.1 MIPLIB

MIPLIB is a library of Mixed Integer Linear Programming instances that is commonly
used for benchmarking integer programming algorithms. For our purpose we selected

2 lp solve 5.5.0.9 is available at http://lpsolve.sourceforge.net/5.5/
3 http://www.ilog.com/products/cplex/

180 R. Marinescu and R. Dechter

Table 2. Results for combinatorial auction problem instances

auction n w∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
reg-upv 203 145 time 5.95 7.83 6.82 8.08 6.79 7.02 3.66
b200g50 87 162 nodes 658 500 310 500 310 533 189
reg-upv 251 166 time 45.42 19.24 14.92 19.37 15.07 16.59 8.31
b250g75 124 190 nodes 3,321 663 333 663 333 620 170
reg-upv 304 173 time 198.07 155.76 90.61 148.34 91.67 125.95 48.67
b300g100 157 204 nodes 7,756 2,561 1,084 2,561 1,084 2,617 569
reg-npv 202 140 time 4.41 4.58 3.52 4.56 3.64 4.75 1.66
b200g50 88 161 nodes 491 280 158 280 158 367 64
reg-npv 251 160 time 18.04 15.52 10.06 15.39 10.21 15.35 4.55
b250g75 120 187 nodes 1,177 593 250 593 250 659 95
reg-npv 302 172 time 185.65 69.81 50.55 69.27 51.24 62.17 24.14
b300g100 156 206 nodes 7,131 1,195 537 1,195 537 1,335 237

four 0/1 ILP instances of increasing difficulty. Table 1 reports a summary of the ex-
periment. We see that, overall, the best-first AND/OR search algorithms explore the
smallest search space, which sometimes translates into significant time savings. For ex-
ample, on lseu, one of the hardest instances, AOBFt+SVO causes a speedup of 2.5 over
AOBBt+SVO, while exploring a search space 3 times smaller. Similarly, AOBFg+SVO
is 2.4 times faster than AOBBg+SVO, while AOBFt+PVO is only slightly better than
AOBBt+PVO. We observe that caching did not help much on these instances, namely
the difference in number of nodes expanded by traversing the AND/OR tree versus
context-minimal AND/OR graph was not significant enough to outweigh the overhead.
This indeed can be explained by the relatively high induced widths.

5.2 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of goods, M = {1, 2, ..., m}
to sell and the buyers submit a set of bids, B = {B1, B2, ..., Bn}. A bid is a tuple
Bj = 〈Sj , pj〉, where Sj ⊆ M is a set of goods and pj ≥ 0 is a price. The winner
determination problem is to label the bids as winning or loosing so as to maximize the
sum of the accepted bid prices under the constraint that each good is allocated to at
most one bid. We used the 0/1 ILP formulation described in [6].

Table 2 shows the results for experiments with 6 classes of moderate size combina-
torial auctions from [6]. These auctions were drawn from the regions distribution
of the CATS 2.0 test suite [14] and simulate the auction of radio spectrum in which a
government sells the right to use specific segments of spectrum in different geographi-
cal areas. We observe that AOBFt+PVO is the best performing algorithm, exploring the
smallest search space. If we look for example at the 300 bid problem instances from the
reg-npv distribution, AOBFt+PVO is on average about 2.5 times faster than the other
AND/OR algorithms and the search space explored is about 4 times smaller. When com-
pared with the classic OR Branch-and-Bound algorithm, AOBFt+PVO causes an even
higher speedup, exploring a search space 30 times smaller. Notice that the AND/OR

Best-First AND/OR Search for 0/1 Integer Programming 181

Fig. 2. Results for regions-upv auctions with 100 goods and increasing number of bids

graph search algorithms AOBBg+SVO and AOBFg+SVO expanded the same number of
nodes as the AND/OR tree search algorithms AOBBt+SVO and AOBFt+SVO, respec-
tively. This indicates that, for these problem classes, the context-minimal AND/OR
search graph is a tree and all cache entries are actually dead. Therefore the gain ob-
served moving from depth-first Branch-and-Bound to best-first search is primarily due
to the optimal cost, which bounds the horizon of best-first, but not depth-first search.

Figure 2 displays the results for experiments with regions-upv auctions hav-
ing 100 goods and increasing number of bids. Each data point represents an average
over 10 random samples. We observe that AOBFt+PVO is the best performing algo-
rithm and, on some of the hardest instances, it outperforms its competitors with up to
one order of magnitude in terms of both CPU time and size of the search space ex-
plored. This demonstrates the power of the dynamic variable selection heuristic which
is able in this case to cut the search tree dramatically. The best-first and depth-first
AND/OR algorithms using static variable orderings explored the same search space,
namely the context-minimal AND/OR graph was a tree (in Figure 2 we only plotted
AOBBt+SVO and AOBFt+SVO respectively) and therefore the gain of best-first over
depth-first Branch-and-Bound search was due to the optimal cost bound, as before.

5.3 Uncapacitated Warehouse Location Problems

In the uncapacitated warehouse location problem (UWLP) a company considers
opening m warehouses at some candidate locations in order to supply its n existing
stores. The objective is to determine which warehouse to open, and which of these
warehouses should supply the various stores, such that the sum of the maintenance and
supply costs is minimized. Each store must be supplied by exactly one warehouse. We
used the 0/1 ILP formulation from [6].

Table 3 displays the results obtained on 6 randomly generated UWLP problem in-
stances4 with 50 warehouses and 200 stores. The warehouse opening and store supply
costs were chosen uniformly randomly between 0 and 1000. These are large problems
with 10,050 variables and 10,500 constraints, but having relatively shallow pseudo-
trees with depths of 123. We can see that AOBFt+PVO dominates in all test cases,

4 Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib/

182 R. Marinescu and R. Dechter

Table 3. Results for uncapacitated warehouse location problem instances

uwlp n w∗ BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

50x200 c h (lp solve) SVO SVO SVO SVO PVO PVO
uwlp001 10,050 50 time 48.61 69.55 44.39 69.53 42.70 25.63 20.22

10,500 123 nodes 86 62 20 62 20 20 7
uwlp004 10,050 50 time 61.08 46.39 37.58 46.42 36.27 17.47 15.49

10,500 123 nodes 142 46 24 46 24 10 3
uwlp013 10,050 50 time 13693.76 116.19 111.28 116.25 105.72 78.86 74.53

10,500 123 nodes 14,846 44 26 44 26 24 13
uwlp018 10,050 50 time 1477.74 161.03 54.58 161.05 52.41 59.52 32.33

10,500 123 nodes 2,666 146 21 146 21 37 8
uwlp020 10,050 50 time 2179.39 190.77 87.58 190.81 83.70 68.91 48.33

10,500 123 nodes 3,668 138 33 138 33 36 10
uwlp024 10,050 50 time 2177.67 125.85 86.64 125.86 82.27 28.19 25.89

10,500 123 nodes 3,288 71 31 71 31 16 4

Table 4. Results for pret MAX-SAT problem instances

pret n w∗ MaxSolver toolbar3 PBS BB AOBBt AOBFt AOBBg AOBFg AOBBt AOBFt

c h (lp solve) SVO SVO SVO SVO PVO PVO
pret60-40 60 6 time 9.47 53.89 0.00 27208.09 7.88 7.56 7.38 3.58 8.41 8.70

160 13 nodes 7,297,773 565 4,194,302 1,255 1,202 1,216 568 1,216 1,326
pret60-60 60 6 time 9.48 53.66 0.00 27628.52 8.56 8.08 7.30 3.56 8.70 8.31

160 13 nodes 7,297,773 495 4,194,302 1,259 1,184 1,140 538 1,247 1,206
pret60-75 60 6 time 9.37 53.52 0.00 26990.70 6.97 7.38 6.34 3.08 6.80 8.42

160 13 nodes 7,297,773 543 4,194,302 1,124 1,145 1,067 506 1,089 1,149
pret150-40 150 6 time - - 0.02 - 95.11 101.78 75.19 19.70 108.84 101.97

400 15 nodes 2,592 6,625 6,535 5,625 1,379 7,152 6,246
pret150-60 150 6 time - - 0.01 - 98.88 106.36 78.25 19.75 112.64 102.28

400 15 nodes 2,873 6,851 6,723 5,813 1,393 7,347 6,375
pret150-75 150 6 time - - 0.02 - 108.14 98.95 84.97 20.95 115.16 103.03

400 15 nodes 2,898 7,311 6,282 6,114 1,430 7,452 6,394

outperforming the classic BB with several orders of magnitude in terms of both run-
ning time and size of the search space explored. In uwlp013 for example, one of the
hardest instances, AOBFt+PVO causes a speed-up of 186 over the classic OR Branch-
and-Bound algorithm, exploring a search tree 1,142 times smaller. When comparing the
best-first AND/OR search algorithms with the depth-first AND/OR Branch-and-Bound
algorithms we observe only minor savings in running time. This is because the corre-
sponding AND/OR search spaces are already small enough and the savings in number
of nodes caused by the best-first AND/OR search algorithms do not translate into time
savings as well. Notice that for this problem class the context minimal AND/OR search
graph explored by the AOBBg+SVO and AOBFg+SVO algorithms is in fact a tree and
therefore all cache entries are dead.

5.4 MAX-SAT Problems

Given a set of Boolean variables the goal of maximum satisfiability (MAX-SAT) is to
find a truth assignment to the variables that violates the least number of clauses. The

Best-First AND/OR Search for 0/1 Integer Programming 183

Fig. 3. Results for dubois MAX-SAT problem instances

MAX-SAT problem can be formulated as a 0/1 ILP as described in [15]. We exper-
imented with problem classes pret and dubois from the SATLIB5 library, which
were previously shown to be difficult for 0/1 ILP solvers (e.g., CPLEX 8.1) [20].

Table 4 shows the results for experiments with 6 pret instances. These are unsat-
isfiable instances of graph 2-coloring with parity constraints. The size of these prob-
lems is relatively small (60 variables with 160 clauses for pret60 and 150 variables
with 400 clauses for pret150, respectively). We observe that, for this problem class,
AOBFg+SVO is the best performing algorithm amongst the 0/1 ILP solvers. For ex-
ample, on pret150-75, the hardest instance, AOBFg+SVO is 4 times faster than
AOBBg+SVO and the search space explored is 6 times smaller. This is due to the prob-
lem structure which is partially captured by a very small context with size 6 and a
shallow pseudo-tree with depth 13. Overall, PBS offers the best performance on this
dataset. However, the search space explored by AOBFg+SVO appears to be the small-
est. This indicates that the computational overhead of AOBFg+SVO is due to evaluating
its guiding lower bound (i.e., solving the linear relaxation of the current subproblem
via SIMPLEX). Notice that BB, MaxSolver and toolbar3 solvers were not able to
solve any of the pret150 instances within a 10 hour time limit.

Figure 3 displays the results for experiments with random dubois instances with
increasing number of variables. These are 3-SAT instances with 3 × degree variables
and 8 × degree clauses, each of them having 3 literals. As in the previous test case,
the dubois instances have very small contexts of size 6 and shallow pseudo-trees with
depths ranging from 10 to 20. We can see that AOBFg+SVO takes full advantage of
the relatively small context-minimal AND/OR search graph and, on some of the larger
instances, it outperforms its 0/1 ILP competitors with up to one order of magnitude
in terms of both running time and number of nodes expanded. PBS is again the over-
all best-performing algorithm, however it fails to solve 4 test instances: on instance
dubois130 it exceeds the 3 hour time limit, whereas on instances dubois180,
dubois200 and dubois260 the clause/pseudo-boolean constraint learning mech-
anism causes the solver to run out of memory. We observe that in this domain also
AOBFg+SVO explores the smallest search space as compared to PBS, but its

5 http://www.satlib.org/

184 R. Marinescu and R. Dechter

computational overhead does not pay off in terms of running time. BB, MaxSolver
and toolbar3 performed very poorly on this dataset and they were not able to solve
any of test instances within a 3 hour time limit.

6 Conclusion

In this paper we introduced a best-first AND/OR search algorithm which extends the
classic AO∗ algorithm and traverses a context-minimal AND/OR search graph for solv-
ing 0/1 ILPs. Since variable selection can influence dramatically the search perfor-
mance, we also proposed a best-first search algorithm that explores an AND/OR search
tree, rather than a graph, and incorporates dynamic variable ordering heuristics. Our
empirical evaluation demonstrated on a variety of 0/1 ILP benchmark problems that
the best-first AND/OR search algorithms outperform the depth-first OR and AND/OR
Branch-and-Bound algorithms sometimes by several orders of magnitude in terms of
both running time and size of the search space explored.

Our best-first AND/OR search approach leaves room for future improvements, which
are likely to make it more efficient in practice. For instance, it can be modified to in-
corporate cutting planes to tighten the linear relaxation of the current subproblem. The
space required by the best-first AND/OR search can be enormous, due to the fact that all
the nodes generated by the algorithm have to be saved prior to termination. Therefore,
the algorithm can be extended to incorporate a memory bounding scheme similar to the
one suggested in [22]. Finally, we can incorporate good initial upper bound techniques
(using incomplete schemes), which in some cases can allow a best-first performance
using depth-first AND/OR Branch-and-Bound algorithms.

Acknowledgments

We would like to thank the anonymous reviewers for commenting on an earlier version
of the paper. This work has been partially supported by the NSF grant IIS-0412854.

References

1. R. Marinescu and R. Dechter. Memory intensive branch-and-bound search for graphical
models. In National Conference on Artificial Intelligence (AAAI’06), 2006.

2. G. Nemhauser and L. Wolsey. Integer and combinatorial optimization. Wiley, 1988.
3. E. Lawler and D. Wood. Branch-and-bound methods: A survey. Operations Research,

14(4):699–719, 1966.
4. R. Dechter and R. Mateescu. And/or search spaces for graphical models. Artificial Intelli-

gence, 2006.
5. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. In Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 224–229, 2005.
6. R. Marinescu and R. Dechter. And/or branch-and-bound search for pure 0/1 integer linear

programming problems. In International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization (CPAIOR’06), pages 152–166,
2006.

Best-First AND/OR Search for 0/1 Integer Programming 185

7. R. Marinescu and R. Dechter. Dynamic orderings for and/or branch-and-bound search in
graphical models. In European Conference on Artificial Intelligence (ECAI’06), pages 138–
142, 2006.

8. R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of a*. In
Journal of ACM, 32(3):505–536, 1985.

9. G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity Analysis of Production and Allocation, 1951.

10. M. Vasquez and J. Hao. A hybrid approach for the 0/1 multidimensional knapsack approach.
In International Joint Conference on Artificial Intelligence (IJCAI’01), pages 328–333, 2001.

11. W. Shih. A branch-and-bound method for the multiconstraint 0/1 knapsack problem. Journal
of the Operational Research Society, 30:369–378, 1979.

12. B. Gavish and H. Pirkul. Allocation of data bases and processors in a distributed computing
system. Management of Distributed Data Processing, 31:215–231, 1982.

13. T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. In
International Joint Conference on Artificial Intelligence (IJCAI’99), pages 542–547, 1999.

14. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-
torial auction algorithms. In ACM Electronic Commerce, pages 66–76, 2000.

15. S. Joy, J. Mitchell, and B. Borchers. A branch and cut algorithm for max-sat and weighted
max-sat. In Satisfiability Problem: Theory and Applications, pages 519–536, 1997.

16. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability. In Con-
straint Programming (CP’04), pages 660–705, 2004.

17. E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint satisfac-
tion problems. In International Joint Conference on Artificial Intelligence (IJCAI’85), pages
1076–1078, 1985.

18. A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5–41, 2001.
19. K. Nillson. Principles of Artificial Intelligence. Tioga, 1980.
20. S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat as weighted csp. In Constraint

Programming (CP’03), 2003.
21. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Pbs: A backtrack search pseudo-boolean

solver. In Symposium on the Theory and Applications of Satisfiability Testing (SAT’02), 2002.
22. P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar. Heuristic search in restricted memory.

In Artificial Intelligence, 3(41):197–221, 1989.

A Position-Based Propagator for the Open-Shop

Problem

Jean-Noël Monette, Yves Deville, and Pierre Dupont

Department of Computing Sciences and Engineering
Université catholique de Louvain

{jmonette,yde,pdupont}@info.ucl.ac.be

Abstract. The Open-Shop Problem is a hard problem that can be
solved using Constraint Programming or Operation Research methods.
Existing techniques are efficient at reducing the search tree but they usu-
ally do not consider the absolute ordering of the tasks. In this work, we
develop a new propagator for the One-Machine Non-Preemptive Prob-
lem, the basic constraint for the Open-Shop Problem. This propagator
takes this additional information into account allowing, in most cases, a
reduction of the search tree. The underlying principle is to use shaving
on the positions. Our propagator applies on one machine or one job and
its time complexity is in O(N2 log N), where N is either the number of
jobs or machines. Experiments on the Open-Shop Problem show that
the propagator adds pruning to state-of-the-art constraint satisfaction
techniques to solve this problem.

1 Introduction

Open-Shop Problems (OSP) are disjunctive scheduling problems known to be
really hard to solve. Up to now, some problems with less than 50 tasks remain
unsolved, although several powerful techniques and algorithms mentioned below
have been designed to reduce efficiently the search.

The Open-Shop Problem aims at finding the order in which a set of tasks is
executed such as to minimize the makespan, i.e. the ending time of the latest
tasks. Each task must be executed on a particular machine for a given duration
and without interruption. A machine cannot process two tasks at the same time.
Additionally, tasks are part of jobs and two tasks of the same job cannot be
processed at the same time. There is no predefined ordering between tasks.

This problem fits very well in the framework of Constraints Programming
(CP). Propagators have been developed to remove inconsistent values from the
domains as early as possible in order to reduce the size of the search tree.
The more prominent techniques are Edge-Finding (EF) and Not-First-Not-Last
(NFNL). Edge-Finding [1,2,3,4] consists in testing whether a particular task
must start before or after a set of tasks. It can be implemented with a time
complexity of O(N log N) where N is the number of tasks on one machine or
one job. Not-First-Not-Last [5,6,7] checks if a task can be the first or the last
among a set of tasks. Its best time complexity is O(N log N).

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 186–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Position-Based Propagator for the Open-Shop Problem 187

Shaving [5,6,8] is an orthogonal technique that performs well in practice for
solving the OSP. It consists in iteratively assigning to a variable its possible
values and checking if this assignment leads to inconsistency. In that case, the
value is removed from the domain of the variable. Every constraint can be prop-
agated to check consistency until the fixpoint is observed. Since it can be costly
to reach this fixpoint, simpler propagators are used. For instance, in [6], only
Edge-Finding is used to look for inconsistencies. Even so, shaving is costly be-
cause the size of the domain of the starting time variables can be huge. For this
reason, shaving in OSP usually considers only the bounds of the domain.

We propose here a new propagator for the One-Machine Non-preemptive
Problem that exploits information given by the position of the tasks. This idea
has already been used successfully in [9], [10] and [11]. The first work uses the
positions as permutation variables in a sorting constraint. An extension of Edge-
Finding is also applied. Secondly, [10] proposes a possible way to decide if a task
can start at some position looking at the number of other tasks that can come
before and after this task. Finally, [11] extends this idea proposing tighter bounds
with an algorithm running in O(N3)

In this paper, we present an alternative way to use the position of the tasks
based on the idea of shaving. For each possible position of a task, lower and
upper bounds on the possible starting time of the task are computed using the
duration and the domain of the variables of the tasks in the same job or machine.
The resulting propagator is applied on the tasks that are part of the same job
or machine with a time complexity of O(N2 log N), where N is the number of
tasks that are part of the job or that must be processed on the machine. This
propagator permits additional pruning that is not performed by NFNL and EF
and permits to detect about 14 % extra inconsistent nodes of the search tree on
a standard benchmark [12].

The next section explains the problem under interest and its mapping in CP.
Section 3 presents the new propagator and Section 4 describes experimental
results assessing the pruning efficiency of the technique. In the last section,
conclusions are drawn as well as directions for future work.

2 The One Machine Non-preemptive Problem

The OSP is an optimization problem that can be solved using branch-and-bound
techniques. The goal of the optimization is to minimize the makespan, i.e. the
ending time of the latest task. Branch-and-bound consists in solving successive
feasibility versions of our problem. The feasibility version consists in determining
if there exists a solution with a makespan smaller than a fixed value. Each time
a solution with makespan m is found, another solution is searched with the
constraint that its makespan is at most m − 1. When no more solution exists,
the last solution found is an optimal one.

The feasibility version of the OSP can be stated as the conjunction of smaller
problems called One Machine Non-preemptive Problem (1NP). This problem
aims at scheduling a set of tasks on a machine such that there is only one not

188 J.-N. Monette, Y. Deville, and P. Dupont

interruptible task processed at a time. Each task is given a duration, an earliest
and a latest starting times. To model the OSP, it is sufficient to define a 1NP
for every machine and every job (and to link them with the makespan). Indeed,
jobs and machines in the OSP have the same behavior: No two tasks associated
with a same job or a same machine can be processed simultaneously. The 1NP
is also the basis for other disjunctive problems such as the Job-Shop Problem
for instance.

Formally, the 1NP is defined as follows: T is the set of tasks that must be
processed and N is its cardinality. For each task t ∈ T , d(t), initial est(t) and
initial lst(t) are given and denote respectively the duration, earliest and latest
starting times of the task t. The problem is to find for each task t, the value S(t)
of its starting time such that est(t) ≤ S(t) ≤ lst(t) and without task overlap:
∀t1, t2 ∈ T, S(t1) + d(t1) ≤ S(t2) ∨ S(t2) + d(t2) ≤ S(t1).

2.1 Problem Modelling in CP

To model the 1NP, several variables are defined for each task t ∈ T . An integer
variable S(t) represents the starting time of the task t. Its domain ranges from
the earliest starting time to the latest starting time of the task (dom(S(t)) =
[est(t), lst(t)]). To model the relative order between the tasks, a set variable
B(t) represents the set of tasks that come before the task t. Its initial domain
is dom(B(t)) = [∅, {u|u ∈ T, u �= t}]. Indeed, initially no task is known to come
before t and all the tasks might come before t. The symbol B(t) (resp. B(t))
represents the upper (resp. lower) bound of the variable B(t). Furthermore, an
additional variable P (t) represents explicitly the absolute order (or the position)
of the tasks in the machine. The domain of this variable ranges from 0 to N − 1
with N being the number of tasks to be processed. The link between the relative
and absolute orders of the tasks is that P (t) represents the size of B(t).

The starting time and the relative ordering between tasks are commonly used
in the modelling of disjunctive scheduling. The use of an absolute order comes
from [9] where the author solves the Job-Shop Problem fixing the permutations
of task orders. In their proposed formulation, a variable is defined for the starting
time of each task, a variable for the starting time of the task in each position and
a variable for the position of each task. Those three sets of variables are linked
together with a sorting constraint and various reduction rules are then defined.
As an initial approach, we chose here for simplicity not to use the variables for
the starting time of the task in each position.

2.2 Constraints

With three complementary representations, the 1NP can be equivalently ex-
pressed using anyone of the three following sets of constraints stating that two
tasks cannot be processed at the same time.

1. ∀t1, t2 ∈ T, (S(t1) + d(t1) ≤ S(t2)) ∨ (S(t2) + d(t2) ≤ S(t1))
2. ∀t1, t2 ∈ T, (t1 ∈ B(t2)) ∨ (t2 ∈ B(t1))
3. ∀t1, t2 ∈ T, (P (t1) < P (t2)) ∨ (P (t2) < P (t1))

A Position-Based Propagator for the Open-Shop Problem 189

Our model uses the three sets of constraints to speed-up propagation. Addi-
tionally, the following channeling constraints ensure the consistency between
variables of each representation. The position of a task t is the number of
tasks that come before t (|B(t)| = P (t)). Also, a task t1 ends before another
task t2 starts if and only if the position of t1 is less than the position of t2
(S(t1) + d(t1) ≤ S(t2) ⇔ t1 ∈ B(t2) ⇔ P (t1) < P (t2)).

In addition to these basic constraints, other redundant constraints can be
defined. First, if t1 comes before t2, every task that comes before t1 comes also
before t2 (t1 ∈ B(t2) ⇔ B(t1) ⊂ B(t2)). An AllDifferent constraint is also
defined on the position variables (alldiff ({P (t) : t ∈ T })), because two tasks
cannot have the same order of execution.

This last constraint is a first example of global constraint. Global constraints
take into account more than two tasks at a time. NFNL and EF are also such
global propagators that allow a much better pruning than the basic constraints.
However, NFNL and EF do not use the information given by the position of the
tasks to derive their information. This work shows how to use this additional
information.

3 The Propagator

The main idea of the new propagator is to apply shaving on the position vari-
ables. Commonly, shaving is applied on the starting time variables and only on
their bounds because of the size of their domains. On the contrary, the domain of
the position variables is rather small and could be shaved in a reasonable time.
To test if the task can be scheduled in a particular position, we compute bounds
on its earliest and latest starting time under this assumption. If the resulting
range does not intersect the domain of S(t), the task cannot be scheduled in that
position. Furthermore, shaving P (t) permits also to reduce the domain of S(t)
to the union of the ranges computed for every position. Following this scheme,
two issues need to be addressed. Firstly, the way to use the bounds on the task
starting time to reduce the domains of the variables (Section 3.1). Secondly, the
approximations used to compute ranges as tight as possible (Section 3.2). Notice
that our approach of shaving is local to this propagator.

Let us first introduce some additional notations. As est(t) represents the earli-
est starting time of a task t, ect(t) will denote its earliest completion time. Those
values are linked by ect(t) = est(t) + d(t). The same quantities can be defined
for set of tasks. If U is a non-empty subset of T , d(U) is the sum of the durations
of the tasks in U and est(U) is the earliest starting time of the set of tasks U . It
is equal to the earliest starting time of any tasks in U (est(U) = mint∈U est(t)).
The dual quantity ect(U) is the earliest completion time of the set U , the time
when every task in U is finished. This last quantity cannot be computed easily
but several lower bounds are known. Especially, the maximum, among every
subset U ′ of U , of the sum of the earliest starting time of U ′ and the duration
of U ′ will be used in this work to approximate ect(U) (Equation 1). This is only

190 J.-N. Monette, Y. Deville, and P. Dupont

a bound because it does not take into account the latest starting time of the
tasks. We denote it b ect(U).

b ect(U) = max
∅�=U ′⊆U

(est(U ′) + d(U ′)) (1)

3.1 Shaving on Position Variables

Shaving enumerates every possible value of P (t). Under the assumption that the
position P (t) of a task t takes a particular value p of its domain, the possible
starting time of t belongs to an interval [est(t, p), lst(t, p)] where est(t, p) and
lst(t, p) denote respectively the earliest and latest possible starting times when
t is in position p.

The value est(t, p) is related with ect(B(t), p) that is the earliest time when p
tasks among those in B(t) have been processed and when all the tasks in B(t)
have been processed. Indeed, in position p, the task t cannot start before that p
tasks among those that can come before t have been processed. Furthermore, t
cannot start before the tasks that must come before are completed. This leads
to the relation

est(t, p) = max (ect(B(t), p), est(t)) .

In this formula, ect(B(t), p) cannot be computed exactly with a reasonable com-
plexity. We propose however to compute a lower bound as tight as possible.
Section 3.2 details how to approximate the value of ect(B(t), p). A very similar
reasoning, not detailed here, can be made to approximate lst(t, p).

Once the ranges [est(t, p), lst(t, p)] have been computed for each p ∈ P (t), the
domain of P (t) and S(t) can be reduced with two simple rules:

∀p ∈ dom(P (t)) : ([est(t, p), lst(t, p)] ∩ dom(S(t)) = ∅) ⇒ P (t) �= p (2)

dom(S(t)) := dom(S(t)) ∩ (∪p∈dom(P (t))[est(t, p), lst(t, p)]) (3)

The first rule removes from the domain of P (t) the values p for which there is
no valid starting time, i.e. when the range [est(t, p), lst(t, p)] is empty or when it
does not intersect with the domain of S(t). The second rule restricts the domain
of S(t) to be included in the union of the computed ranges. Alternatively rule
(3) could only reduce the bounds of the domain of S(t), while ensuring that S(t)
remains a single interval. The latter is standard in scheduling. S(t) must then
be greater than the least value among the est(t, p) for valid p’s and less than the
greatest value among the lst(t, p) for valid p’s.

dom(S(t)) := [min
p∈dom(P (t))

(est(t, p)) , max
p∈dom(P (t))

(lst(t, p))] (4)

Experiments will consider the two versions of the reduction of S(t). The re-
duction of S(t) (using rule (4)) and P (t) can be done with a time complexity of
O(N) where N is the number of tasks to be processed on the machine, thus an
upper bound on the size of the domain of P (t).

A Position-Based Propagator for the Open-Shop Problem 191

3.2 Bounding the Earliest Completion Time of a Task Subset

This section presents the approximation of ect(B(t), p) that is useful to evaluate
est(t, p). The algorithm to compute lst(t, p) is similar but is not exposed. In
order to compute a lower bound of ect(B(t), p), we compute the minimum of
the earliest completion time over all the sets U of cardinality p that are superset
of B(t) and subset of B(t). In the following, b ect(B(t), p) will denote the lower
bound of ect(B(t), p). This is a lower bound because it makes use of b ect(U)
which is a lower bound itself.

b ect(B(t), p) = min
U

(b ect(U)) (5)

where |U | ≥ p and B(t) ⊆ U ⊆ B(t)

Interestingly, this lower bound can be computed efficiently using rules similar
to the ones in the Jackson Preemptive Schedule [13] for computing the earliest
ending time of a set of task supposing preemption. Our algorithm also allows
preemption for the tasks but does not take into account the latest starting time
of the tasks. Instead, the duration of the tasks is considered to schedule a subset
of tasks of fixed size as soon as possible in a preemptive way. It is done respecting
the following precedence rules:

– Whenever a task t is available and the machine is free, process t.
– When a task t1 becomes available during the processing of another task t2

and the remaining processing time of t1 is less than the remaining processing
time of t2, stop t2 and start processing t1.

– When a task t1 becomes available during the processing of another task t2,
such that t1 ∈ B(t) and t2 /∈ B(t), stop t2 and start t1.

The value b ect(B(t), p) is obtained when every tasks in B(t) have been
processed and at least p tasks in B(t) have been processed.

An important property is that, although the algorithm supposes the tasks to
be interruptible, the resulting quantities correspond exactly to the ones given by
equation (5) where no preemption is supposed. Indeed, it is possible to merge
the different parts of the completed tasks following the order of their starting
times. The result is a non-preemptive schedule of the set of tasks. Preemption
is not used here as a relaxation but just as a way to ease the computation.
The computed value of b ect(B(t), p) is however a relaxation of the exact value
because the latest possible starting times of the tasks are not considered.

Moreover a single run of the above algorithm gives the value b ect(B(t), p) for
every p. Indeed, it suffices to remember the successive times when a task ends
to have the b ect(B(t), p) value for the successive values of p.

A pseudo-code of the algorithm is presented in Algorithm 1. The algorithm
uses two priority queues. The first (Q1) sorts the tasks in order of earliest start-
ing time. It permits to put in the second priority queue (Q2) only the available
tasks at a particular time (lines 9-14). Q2 sorts the tasks in ascending order
of remaining duration. When a task is popped from Q2, two situations arise.

192 J.-N. Monette, Y. Deville, and P. Dupont

Algorithm 1. Simplified Algorithm to Compute b ect(B(t), p)
Input: B : the set of tasks
Input: D : vector of the duration of the tasks
Input: EST : vector of the est of the tasks
Output: ECT : vector of the b ect(B(t), p) for each position p

Q1 := new PriorityQueue()1

Q2 := new PriorityQueue()2

time := 03

p := 04

forall t ∈ B do5

RD(t) := D(t) //RD is the remaining duration6

Q1.put(t,EST(t))7

while not Q1.empty() do8

t := Q1.pop()9

time := EST(t)10

Q2.put(t,RD(t))11

while not Q1.empty() and EST(Q1.top()) = time do12

t := Q1.pop()13

Q2.put(t,RD(t))14

while not Q2.empty() and15

(Q1.empty() or time + RD(Q2.top()) < EST(Q1.top())) do16

t := Q2.pop()17

time := time +RD(t)18

RD(t) := 019

p := p+120

ECT(p) := time21

if not Q2.empty() then22

t := Q2.pop()23

RD(t) := RD(t) + time - EST(Q1.top())24

Q2.push(t,RD(t))25

time := EST(Q1.top())26

27

return ECT28

Either it can be processed before a new task is available and the time when it
ends is recorded (lines 15-21). Or the task must be interrupted to check if a
newly available task could not end earlier (lines 23-26).

For simplicity, the outlined algorithm is a shortened version where the fact
that some tasks are part of B(t) is not considered. Taking it into account can
be done simply using a penalty in the second priority queue to ensure that
those tasks are chosen first. Two parallel queues can also be used and the one
containing the tasks in B(t) is emptied first. Additionally a counter must be
used to record when all mandatory tasks have been processed.

The time complexity of the algorithm is O(n log n) with n = |B(t)| which
in the worst case is equal to N − 1 (N is the number of tasks that must be
processed). Indeed, the operation put() and pop() of the priority queues can be
implemented in O(log n). There are exactly n tasks that are put in Q1 (lines

A Position-Based Propagator for the Open-Shop Problem 193

5-7) and at most 2n tasks that are put in Q2 because there are exactly n tasks
that can be extracted from Q1 (lines 9-14) and at most n reinsertions of task
due to interruption (lines 22-26).

Example 1. To show the computation of b ect(B(t), p), let us suppose the fol-
lowing tasks:

– t0 which is the task under consideration; dom(B(t0)) = [{t4}, {t1, t2, t3, t4}]
and dom(P (t0)) = [1, 4]

– t1 with est(t1) = 0 and d(t1) = 5.
– t2 with est(t2) = 1 and d(t2) = 3.
– t3 with est(t3) = 2 and d(t3) = 1.
– t4 with est(t4) = 3 and d(t4) = 3.

Following a chronological order, t1 is scheduled first, starting at the time 0. On
time 1, t2 is available and as its duration (d(t2) = 2) is shorter than the re-
maining duration of t1 (5 − 1 = 4), t1 is stopped and t2 is started. On time 2,
t2 is interrupted to let process t3 whose duration is shorter than its remaining
duration (3−1 = 2 > 1). On time 3, t3 has been fully processed. Tasks t1, t2 and
t4 are available but t4 is chosen as it is the only mandatory task among them.
Indeed, by definition of dom(B(t)), t4 is the only task which must be performed
before t0. This task is run for 3 units of time. When it is finished, t2 is run before
t1 as its remaining duration is less than the remaining duration of t1. After two
more units of time, t2 is fully processed and t1 is processed until time 12. The
next table gives the processing times of each task in a preemptive way.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Task t1 t2 t3 t4 t2 t1

Recording the values when tasks are fully processed, we obtain the following
values:

– b ect(B(t0), 1) = b ect(B(t0), 2) = 6. Indeed, the mandatory task (t4) was
only finished in second position.

– b ect(B(t0), 3) = 8
– b ect(B(t0), 4) = 12

Although the computation interrupts several tasks, the obtained bounds cor-
respond to non-preemptive schedules (as expected by equation (5)). The table
below shows the reordering for each position.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
p = 1 t4
p = 2 t3 t4
p = 3 t2 t3 t4
p = 4 t1 t2 t3 t4

For instance, with the 4 tasks being scheduled, it is possible to run t1 from
time 0 until time 5 where t2 is run until time 8. At time 8, t3 is started for 1

194 J.-N. Monette, Y. Deville, and P. Dupont

time unit and afterward t4 is being run until the time 12 which corresponds to
the computed value. ��

Example 2. Figure 1 presents a small example where the new propagator per-
mits to remove inconsistent values. In this example, there are five tasks to be
processed. Their respective domains and duration are the following.

– d(t1) = 3 and dom(S(t1)) = [8, 17]
– d(t2) = 5 and dom(S(t2)) = [0, 15]
– d(t3) = 4 and dom(S(t3)) = [5, 16]
– d(t4) = 4 and dom(S(t4)) = [1, 16]
– d(t5) = 2 and dom(S(t5)) = [7, 18]

Applying NFNL or EF on this set of tasks does not reduce any domain of the
starting time variables. However, our propagator allows to remove the value 8
from the domain of S(t1). Using the algorithm to compute the earliest and latest
possible starting time of t1 in each position, the obtained values are given next.

– est(t1, 0) = 8 and lst(t1, 0) = 2
– est(t1, 1) = 8 and lst(t1, 1) = 7
– est(t1, 2) = 9 and lst(t1, 2) = 11
– est(t1, 3) = 11 and lst(t1, 3) = 15
– est(t1, 4) = 15 and lst(t1, 4) = 17

From those values, it can be derived that t1 cannot be processed in position
0 or 1. Thus the domain of its starting time can be reduced to the union of
the ranges defined in position 2, 3 and 4, resulting in dom(S(t1)) = [9, 17]. In
comparison with the initial domain, the value 8 has been removed. ��

The computing of est(t, p) and lst(t, p) for each p ∈ dom(P (t)) is done in
O(N log N) with N the number of tasks and the reduction of the domains can
be done in O(N). The time complexity of the whole reduction algorithm for a

t1

t2

t3

t4

t5

0 5 10 15 20

Fig. 1. Example of reduction, see Example 2 for details

A Position-Based Propagator for the Open-Shop Problem 195

task t is thus O(N log N). This yields a total complexity of O(N2 log N) for one
pass of our reduction algorithm, as there are N tasks to consider. In comparison,
the well-known techniques NFNL and EF can be both implemented to run with
a time complexity of O(N log N).

4 Experiments

To assess the practical usefulness of the new propagator, we implemented it in
the open constraint environment Gecode [14]. Two versions of the propagator
have been written. The first that we will refer to as PS (standing for Position
Shaving) may remove values inside the domains of the starting time variables,
while the second, PSB (for Position Shaving with Bounds reduction), is limited
to reduce the bounds of the starting time variables. We implemented also the
NFNL and EF techniques following the algorithms described in [15]. Note that
the implementations of EF and NFNL described in that book run in O(N2)
but they use much simpler data structures than the theoretically most efficient
algorithm described respectively in [3] and [7]. Finally, we modeled the Open-
Shop Problem as described in the first section with the NFNL, EF and PS or PSB
propagators and the AllDifferent constraint. PS and PSB are never used together
as they are two versions of the same propagator. Concerning the branching, we
applied a simple heuristic that uses the position variables. It orders the tasks in
the machine before ordering them in the jobs. Among the tasks whose position is
not fixed, it chooses the task for which there is the smallest number of remaining
possible positions. In case of tie, the shortest task is chosen. The value-heuristic
chooses the smallest value in the position variable.

Our tests have been run using the instances of the Guéret and Prins bench-
mark [12]. It is composed of 80 square problems, i.e. the number of jobs and
machines are equal. There are 10 instances for each size ranging from 3x3 tasks
to 10x10 tasks. Every runs have been performed on an Intel Xeon 3 Ghz with
512 KB of cache.

The first experiment consists in observing the total runtime and the size of the
search tree to solve each instance of the benchmark, using different combinations
of propagators. The running time is limited to one hour for each instance. The
results are presented in Tables 1 and 2. Table 1 gives the number of solved
instances and the average number of nodes in the search tree. The mean is
computed over the instances commonly solved whenever the number of solved
instances differs (only for problem size 7x7). In table 2, the same scheme is used
but the mean running time is presented instead of the size of the search tree.
The running time is given in seconds.

In the two tables, columns 2 and 3 present the results when only PS is used
but nor EF neither NFNL. Columns 4 and 5 presents the results when only
PSB is used. In the third setting (columns 6-7), NFNL and EF are activated
but not PS, nor PSB. In the columns 8-9 and 10-11, NFNL and EF are used in
conjunction respectively with PS and with PSB.

Whenever NFNL and EF are used, the same total number of instances are
solved with or without our new propagator. However, the solved instances are not

196 J.-N. Monette, Y. Deville, and P. Dupont

Table 1. Number of solved instances and mean size of the search tree

PS PSB NFNL+EF PS+NFNL+EF PSB+NFNL+EF

Size Solved Nodes Solved Nodes Solved Nodes Solved Nodes Solved Nodes

3x3 10 39 10 38 10 38 10 39 10 38
4x4 10 128 10 127 10 134 10 127 10 126
5x5 10 451 10 456 10 371 10 369 10 373
6x6 10 3483 10 3896 10 2612 10 3402 10 3816
7x7 3 - 3 - 7 280914 8 208571 8 208582
8x8 0 - 0 - 1 120156 1 12953 1 12929
9x9 0 - 0 - 1 747146 0 - 0 -

10x10 0 - 0 - 0 - 0 - 0 -

Tot 43 43 49 49 49

Table 2. Number of solved instances and mean running time in seconds

PS PSB NFNL+EF PS+NFNL+EF PSB+NFNL+EF

Size Solved Time Solved Time Solved Time Solved Time Solved Time

3x3 10 0.008 10 0.008 10 0.006 10 0.01 10 0.008
4x4 10 0.075 10 0.047 10 0.054 10 0.069 10 0.068
5x5 10 0.38 10 0.32 10 0.19 10 0.36 10 0.32
6x6 10 3.9 10 3.5 10 1.9 10 4.3 10 3.9
7x7 3 - 3 - 7 338 8 496 8 432
8x8 0 - 0 - 1 106 1 43 1 37
9x9 0 - 0 - 1 1708 0 - 0 -

10x10 0 - 0 - 0 - 0 - 0 -

Tot 43 43 49 49 49

always the same. From the two first settings, it can be concluded that the new
propagator is not able to solve hard problems alone. In conjunction with NFNL
and EF, Table 1 shows that PS and PSB are able to reduce the size of search
tree, sometimes substantially, as it is the case for the unique solved instance
of size 8x8. Concerning the size 6x6, surprisingly the mean size is greater when
using PS and PSB. Looking at the detail for each instance of this size, it appears
that only the first instance(GP06-01) has a greater search tree when using the
new propagators. For GP06-01, the search tree is ten times bigger when using
PS or PSB while it is on average 30% smaller for the nine other instances of size
6x6.

When the running times are considered, Table 2 shows that it is always greater
when using PS or PSB than without them, except for the solved instance of size
8 where the time is 2 to 3 times smaller, while the search tree size was almost 9
times smaller.

Note that the reported times are much longer than those presented in [15]
because we did not use an environment dedicated to scheduling but a general
purpose constraint engine. However, implementing our new propagator in a ded-
icated environment would be beneficial.

A Position-Based Propagator for the Open-Shop Problem 197

The next experiment (Table 3) compares the mean runtime to reach the fix-
point when NFNL, EF and PS(B) are activated with the mean runtime when
PS(B) is not used. This comparison is performed on the search tree obtained
when NFNL, EF and PS(B) are activated with a maximum number of back-
tracks of 300,000. For each instance, the runtimes to reach the fixpoints are
summed along every states in the search tree.

At the same time, the pruning is also compared. As for the runtime, this
pruning is computed along the search tree obtained when every propagators
are activated. The number of failed states with and without PS(B) activated
are counted. Additionally in each state the supplementary reduction performed
after adding PS(B) is counted for each type of variables (S(t), B(t) and P (t))
and these quantities are summed upon the whole search tree. The reduction
is computed as the difference between the size of the domains of the variables
in the initial state in a node of the search tree and their size after performing
propagation until the fixpoint in the same node. If a failure is detected, the node
is not taken into account for the reduction counts.

Table 3. Additional Pruning and time spent with PS and PSB(in %)

Red. S(t) Red. B(t) Red. P(t) Fails Time

Size PS PSB PS PSB PS PSB PS PSB PS PSB

3 7.6 1.5 0.3 0.3 5.7 3.6 0 0 - -
4 13.6 5.6 7.0 7.4 14.2 12.7 2.1 2.1 184.0 165.7
5 14.1 5.6 4.8 4.9 11.2 9.8 0.7 0.8 192.1 182.2
6 27.3 14.9 9.0 9.2 15.6 14.1 8.0 8.2 241.3 181.0
7 108.7 58.3 21.3 21.8 42.5 42.7 13.9 14.2 333.2 325.3
8 116.9 34.9 17.4 16.7 30.1 26.1 13.3 13.9 281.1 254.0
9 78.9 25.4 13.9 13.2 20.5 18.0 37.7 36.3 291.5 272.0
10 64.6 17.9 9.9 10.3 20.9 19.5 37.4 37.3 155.5 196.5

Mean 54.0 20.5 10.4 10.5 20.1 18.3 14.1 14.1 239.8 225.3

Table 3 presents the results averaged by size. The three first pairs of columns
presents the additional pruning of the variables S(t), B(t) and P (t). The next
two columns shows the additional failures detected and the last columns reports
the additional time spent to reach those improvements. Two cells are empty
because the running time was to short to compute them accurately.

It can be seen that the results are quite similar between PS and PSB, except in
the columns of the starting time variables, since PS may prune inside the domain
of S(t) while PSB cannot. However, this difference does not influence the other
variables nor the failures. Indeed, no other constraint considers forbidden values
inside domains. Concerning the increase of the running time to reach a fixpoint,
it is smaller with PSB because less values are removed by PSB. Taking into
account the pruning potential and the used time, we can conclude that PSB is
more efficient than PS. Furthermore, there are about 14% more failures detected
with either version of our propagator. When no failure is detected, the domains
of the variables are also substantially reduced.

198 J.-N. Monette, Y. Deville, and P. Dupont

Looking at the evolution of the results in function of the size of the problem,
the amount of reduction of the domains increases until problems of size 7 and
then decreases. The time spent follows the same scheme while the number of
failures keeps increasing. Because from size 7 the search trees may be not full
(because the search is cut) and the explored part is smaller for increasing size,
we can suppose that our propagator detect more failures early in the search but
reduces more domains at the end or in the middle of the search than in the first
steps. Observing the failures for the smallest sizes, it can also be seen that PS
and PSB do not reduce further the small search trees of these instances. When
size grows (≥ 6) and complexity increases, PS and PSB prove their usefulness.

In conclusion, the experiments show that although the introduction of PS or
PSB does not increase the number of solved instances, the addition of such a
propagator substantially improves the pruning at the nodes of the search tree,
as well as the number of detection of inconsistencies.

5 Conclusion

This work addresses the Open-Shop Problem by Constraint Programming. It
presents a new propagator, in two versions, that uses the absolute position of
the tasks to detect new inconsistencies not discovered by standard algorithms,
known as Not-First-Not-Last or Edge-Finding. Based on the principle of shaving,
this propagator prunes the variables for the starting time of tasks and for the
position of tasks. In its first version, holes in the starting time variable are allowed
while this is not the case in the second version that only reduces the bounds of
the domains.

Experiments on a standard benchmark show that the new propagator helps
efficiently in the reduction of the domains and may detect about 14% more
inconsistent states in the search tree but at a higher cost. Concerning the size
of the search tree, the reduction of the domains is not always reflected by a
reduction of the tree size. The search can be up to 10 time smaller but for the
majority of the problems the reduction is not as important. In a few cases, the
search tree is even increased with the new constraint.

Another observation comes from the comparison between the two versions of
the propagators. Making holes in the domain of the starting time variables is not
rewarding regarding the reduction of the other variables and of the search tree.
The cause is that no other constraint makes use of this additional information.

In conclusion, we argue that our propagator would be especially useful in
conjunction with other constraints that take into account the position of tasks
or the holes in the domains. This may be a good way to improve resolution of
hard disjunctive scheduling problems. The branching heuristic should also be
adapted in order to avoid an augmentation of the size of the search tree when
the filtering is strengthened.

Possible future work includes the definition of tighter bounds for the earliest
completion time of a subset of tasks of fixed size. It also covers the definition of
better branching heuristics and additional position-based constraints.

A Position-Based Propagator for the Open-Shop Problem 199

Acknowledgment

The authors wish to thank the anonymous reviewers for their constructive com-
ments. This research is supported by the Walloon Region, project TransMaze
(516207).

References

1. J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Manage-
ment Science, 35(2):164-176, 1989.

2. D. Applegate and B. Cook. A computational study of the job shop scheduling
problem. ORSA J. Comput., 3(2):149-156, 1991.

3. J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.
European J. Oper. Res.,78:146-161, 1994

4. Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. Proc.
11th Intl. Conf. on Logic Programming, 1994.

5. J. Carlier and E. Pinson. A practical use of Jackson’s preemptive schedule for
solving the job-shop problem. Ann. Oper. Res.,26:269-287, 1990.

6. U. Dorndorf, E. Pesch and T. Phan-Huy. Solving the open shop scheduling problem.
J. Scheduling, 4:157-174, 2001.

7. P. Vilim. O(n log n) filtering algorithms for unary resource constraint. Proc.
CPAIOR 2004, LNCS 3011, 335-347, 2004.

8. P. Martin and D. Shmoys. A new approach to computing optimal schedules for the
job-shop scheduling problem. Proc. 5th Conf. Integer Programming and Combina-
torial Optimization, 1996.

9. Jianyang Zhou. A permutation-based approach for solving the job-shop problem.
Constraints, 2:185-213, 1997.

10. W. Nuijten and C. Le Pape. Constraint-based job shop scheduling with ILOG
Scheduler. J. Heuristics, 3:271-286, 1998.

11. A. Wolf. Better propagation for non-preemptive single-ressource constraint prob-
lems. Proc. of CSCLP 2004, LNAI 3419, 201-215, 2005.

12. C. Guéret and C. Prins. A new lower bound for the open-shop problem. Annals of
Operation Research, 92:165-183, 1999.

13. J. R. Jackson. An extension of Johnson’s results on job lot scheduling. Naval Re-
search Logistics Quarterly, 3:201-203, 1956.

14. http://www.gecode.org
15. P. Baptiste, C. Le Pape and W. Nuijten. Constraint-based scheduling. Kluwer

Academics Publisher, 2001.

Directional Interchangeability for Enhancing

CSP Solving

Wady Naanaa

Faculté des Sciences de Monastir, 5019 Monastir, Tunisia;
naanaa.wady@planet.tn

Abstract. This paper introduces directional interchangeability, a weak
form of neighborhood interchangeability [6]. The basic idea is that al-
though two values of a variable may not be neighborhood interchange-
able if we consider the whole neighborhood of the variable, they could be
neighborhood interchangeable if we restrict the neighborhood to a subset
of neighboring variables induced by a variable ordering.

In spite of the fact that the proposed concept cannot be used to re-
move redundant values while preserving problem satisfiability, it pro-
vides a mean to partition value domains into subsets of directionally
interchangeable values that can be attempted simultaneously by a tree
search.

Several experiments carried out on various binary CSPs, clearly indi-
cate that variations of the Forward-Checking algorithm and the Main-
taining Arc-Consistency algorithm that exploit directional interchange-
ability often outperform the original algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs) provide a general framework for mod-
eling and solving numerous combinatorial problems. Basically, a CSP consists of
a set of variables, each of which can take a value chosen among a set of potential
values called its domain. The constraints express restrictions on combinations
of domain values. The problem is to find an assignment of values to variables,
from their respective domains, such that all the constraints are satisfied.

CSPs, which are known to be NP-complete problems, can model problems in
various domains. For that reason, many solving algorithms have been developed
for them. In this article we are interested in complete methods which have the
advantage of finding at least one solution to a problem if such a solution exists.
Forward Checking (FC) [7] and Maintaining Arc Consistency (MAC) [12] are
two widely studied complete algorithms. Each of them enforces during search a
form of local consistency to prune the search tree and therefore to fasten problem
solving.

However, for large CSPs, finding a solution remains a time consuming task.
Moreover, the emergence of new concrete problems, reinforces the need for in-
creasingly powerful algorithms.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 200–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Directional Interchangeability for Enhancing CSP Solving 201

For the purpose of enhancing complete algorithms, E. C. Freuder proposed
neighborhood interchangeability of domain values, a particular form of sym-
metry, and used it to reduce the domains of variables by removing redundant
values [6]. Because in a subset of neighborhood interchangeable values, we can
keep only one value of the subset in the domain of the variable while not affecting
the satisfiability of the original problem. This may lead to the exploration of a
significantly smaller search tree provided that neighborhood interchangeability
occurs frequently in a problem. However, for many problems little interchange-
ability occurs and the overhead due to determining redundant values could offset
the benefit. In an attempt to exploit interchangeability more intensively, many
local versions of interchangeability have been proposed [2,9,11,13,16].

This paper introduces directional interchangeability, a variation of neighbor-
hood interchangeability which is inspired by the concept of directional arc-
consistency [5]. The proposed concept differs from the original one in that it
assumes a variable ordering and uses it to focus only on a subset of the neigh-
boring variables. That is, when computing directional interchangeability for the
domain of a given variable, the neighborhood of this variable is limited to vari-
ables coming earlier in the ordering. This restriction yields directional inter-
changeability to occur more often than neighborhood interchangeability, but in
compensation it does not allow the removal of redundant values. The reason is
that directionally interchangeable values are not equivalent with regard to the
domains of all the neighboring variables and then one cannot keep a single value
from each class of directionally interchangeable values while preserving problem
satisfiability. Nonetheless, directional interchangeability can be used to partition
the value domains into subsets of directionally interchangeable values in such a
way that values within the same subset could be attempted simultaneously by
a tree search. In other words, directional interchangeability can be exploited by
a tree search to assign to each variable a specific subset of its domain at each
branch of search instead of attempting a single value per branch as it is the case
in a classical search.

The paper is organized as follows: the next section introduces some defin-
itions and preliminaries. Section 3 is devoted to formally defining directional
interchangeability and describing and proving the correctness of the algorithm
used to compute directionally interchangeable values. In Sect. 4, we describe a
search algorithm which exploits directional interchangeability. An experimental
study carried on various binary CSPs is reported in Sect. 5. Section 6 discusses
related work and Sect. 7 presents some conclusions and future works.

2 Definitions and Notations

Definition 1. A constraint satisfaction problem (CSP) is given by a triple
(X, D, C) where:

1. X = {x1, . . . , xn} is a finite set of variables.
2. D = {D1, . . . , Dn} is a sequence of value domains so that Dk is the domain

of xk.

202 W. Naanaa

3. C = {C1, . . . , Cm} is a set of constraints. Each constraint Ck applies on a list
of variables V ar(Ck) = (xk1 , . . . , xkr) called the scope of Ck and is defined
by a r-ary relation Rel(Ck) ⊆ Dk1 × Dk2 . . . × Dkr . Rel(Ck) determines the
r-tuples of values accepted by Ck.

The arity of a constraint is the size of its scope. The arity of a problem is the
maximum arity over its constraints. In this paper, we focus on binary CSPs, i.e.
CSPs with binary and unary constraints only. It must be emphasized however
that the proposed concept can be easily extended to non-binary CSPs. Two vari-
ables xi and xj connected by a binary constraint denoted by Ci,j are said to be
neighbors. A value a ∈ Di is compatible with b ∈ Dj if (a, b) ∈ Rel(Ci,j). In this
case, a is called a support of b. Given a binary CSP, its constraint graph asso-
ciates each variable with a node and links any oriented pair of nodes (xi, xj) such
that Ci,j ∈ C. The notion of arc-consistency, a widely studied consistency level,
is defined from the constraint graph as follows: an arc (xi, xj) in the constraint
graph is arc-consistent iff every value in Di has a support in Dj .

The support set of a value a of a variable xi is defined by:

N(xi, a) = {b | (a, b) ∈ Rel(Ci,j)} .

We define the preceding support set of a value a of a variable xi with respect
to an ordering ≺ of the variables as follows:

�N(xi, a) = {b | (a, b) ∈ Rel(Ci,j) and xj ≺ xi} .

3 Directional Interchangeability (DI)

First, let us remind the definition of the concept from which DI is derived, namely
neighborhood interchangeability (NI) [6]. Given a binary CSP, two values a and b
of a variable xi are neighborhood interchangeable iff they have the same support
set, i.e., N(xi, a) = N(xi, b). NI identifies equivalent values in the domain of a
variable xi by considering all the neighbors of xi. In contrast, DI supposes a
variable ordering and focuses exclusively on the neighboring variables preceding
xi in the ordering.

Formally, DI is defined as follows:

Definition 2. Let P be a binary CSP and let a and b be two values in the
domain of a variable xi. a and b are said to be directionally interchangeable
(DI) with respect to a variable ordering of the variables iff they have the same
preceding support set, i.e., �N(xi, a) = �N(xi, b).

Note that the DI condition is weaker than the condition imposed by NI. As a
consequence, DI may occur more frequently than NI. As it is the case for NI,
DI defines an equivalence relation on the domains of each variable. The domain
Di of a variable xi can be split into a set of sub-domains Δi = {Δi,1, . . . , Δi,s}
such that the elements of each Δi,k, k : 1, . . . , s are pairwise DI.

Directional Interchangeability for Enhancing CSP Solving 203

In [6], the author proposed an algorithm for partitioning the domain of a vari-
able into subsets of NI values. Practically, the algorithm builds a discrimination
tree in which the nodes represent variable-value pairs from the neighborhood of
the considered variable except for the root which is a fictive node. Each path of
the tree from the root to a leaf is annotated by a computed subset of NI values.
All the variable-value pairs that appear in a path are supports of the values
appearing in the annotation of that path. The complexity of the algorithm is
O(nd2), where n is the number of variable and d the size of the largest domain.

In practice, the construction of an n-ary tree, a dynamic data structure, at
each choice point significantly slows down the solving process. For this reason
we propose a new algorithm (see Function 3) which avoids this drawback while
keeping the same time and space complexity.

The algorithm iterates over the values of the neighbors of xi for the purpose of
partitioning the values of Di. Note that only the values of the variables preceding
xi are considered (see line 3). As it will be shown below, the discrimination
between non DI values can be guaranteed by computing, at each iteration, a
class number for each a ∈ Di (line 1 thru 16). At the two last loops of the
algorithm, the partition Δi is deduced from the class numbers obtained at the
last iteration of the loop starting at line 3.

Function 3. DI–Partition(xi, X, D, C)

1. for each a ∈ Di do c(a) ←− 0
2. cmax ←− 0
3. for each Ci,j ∈ C such that j ≺ i do
4. for each b ∈ Dj do
5. for each a ∈ Di do
6. score(a) ←− 2 ∗ c(a) + comp(a, b)
7. for s from 0 to 2 ∗ cmax + 1do
8. freq(s) ←− 0
9. for each a ∈ Di do
10. freq(score(a)) ←− freq(score(a)) + 1
11. rank(0) ←− 0
12. for s from 1 to 2 ∗ cmax + 1do
13. rank(s) ←− rank(s − 1) + freq(s − 1)
14. for each a ∈ Di do
15. c(a) ←− rank(score(a))
16. cmax ←− max(c)
17. for s from 0 to cmax do
18. Δi,s ←− ∅
19. for each a ∈ Di do
20 Δi,c(a) ←− Δi,c(a) ∪ {a}
21. return(Δi)

To establish the correctness proof of algorithm DI-Partition, we introduce the
following notations. The values of the variables preceding xi according to the
ordering ≺ are denoted by b1, b2, . . . , bm, where m =

∑
Ci,j∈C,xj≺xi

card(Dj).

204 W. Naanaa

The algorithm is based on the sequence (ck) 0≤k≤m which is defined for all
a ∈ Di as follows

c0(a) = 0 (1)
ck(a) = card({a′ ∈ Di | 2ck−1(a′) + κ(a′, bk) < 2ck−1(a) + κ(a, bk)}) (2)

where the κ(a, b) function is defined as:

κ(a, b) =
{

1 if a and b are compatible
0 otherwise (3)

As specified by (1), at the beginning of the process (line 1), all the values
in Di are assumed to be directionally interchangeable, that is c0(a) = 0 for all
a ∈ Di. At iteration k, the algorithm computes ck according to (2). The value
obtained by setting ck(a) to rank(score(a)) (see line 15) is precisely the value
specified by (2).

Lemma 4. if ck(a) < ck(a′) then ck′(a) < ck′(a′) for all k′ > k.

Proof. Suppose we have ck(a) < ck(a′) for some k and there exists k′ > k such
that ck′(a) ≥ ck′ (a′). Assume k′ is the smallest integer which verifies the latter
assumption. This means that ck′−1(a) < ck′−1(a′) and then that 2ck′−1(a)+1 <
2ck′−1(a′). By (3), we get

2ck′−1(a) + κ(a, bk′) < 2ck′−1(a′) + κ(a′, bk′) . (4)

It follows that

ck′(a) = card({a′′ ∈ Di | 2ck′−1(a′′) + κ(a′′, bk′) < 2ck′−1(a) + κ(a, bk′)})
< card({a′′ ∈ Di | 2ck′−1(a′′) + κ(a′′, bk′) < 2ck′−1(a) + κ(a, bk′)} ∪ {a})
≤ card({a′′ ∈ Di | 2ck′−1(a′′) + κ(a′′, bk′) < 2ck′−1(a′) + κ(a′, bk′)})
= ck′(a′)

Hence, ck′(a) < ck′(a′) which contradicts the hypothesis. ��

Theorem 5. cm(a) = cm(a′) iff �N(xi, a) = �N(xi, a
′).

Proof. Assume that cm(a) = cm(a′) but �N(xi, a) = �N(xi, a
′) and proceed to

deduce a contradiction. �N(xi, a) = �N(xi, a
′) implies that ∃k, 1 ≤ k ≤ m such

that κ(a, bk) = 0 and κ(a′, bk) = 1 or vice versa. We distinguish two cases

1. ck−1(a) = ck−1(a′)
Suppose, without loss of generality that κ(a, bk) = 0 and κ(a′, bk) = 1. It
follows that 2ck−1(a) + κ(a, bk) < 2ck−1(a′) + κ(a′, bk). By proceeding as
in the proof of lemma 4 (at the level of (4)), we get ck(a) < ck(a′) and by
lemma 4, we deduce that cm(a) < cm(a′) which contradicts the hypothesis.

2. ck−1(a) = ck−1(a′)
By lemma 4, we get either cm(a) < cm(a′) or cm(a) > cm(a′) which contra-
dicts the hypothesis.

Directional Interchangeability for Enhancing CSP Solving 205

The remaining part of the proof is obvious, since �N(xi, a) = �N(xi, a
′) implies

that κ(a, bk) = κ(a′, bk) for all k in the range 1 ≤ k ≤ m. Thus, starting from
c0(a) = c0(a′) = 0, we get cm(a) = cm(a′). ��

As can be seen from the pseudo-code of Function 3, there are at most three nested
loops. The number of times these loops are executed is bounded by O(nd2).
Indeed, each variable can be constrained by at most n−1 constraints, the size of
the largest value domain is d and cmax is less or equal to d since, by definition,
the ck’s map into {0, . . . , d−1}. As supplementary storage units, we used arrays
score, freq and rank which have all a size of O(d).

4 Exploiting Directional Interchangeability

In this section, we present FC-DI a variation of the Forward-Checking algorithm
which exploits directional interchangeability. We do not describe MAC-DI which
is also used in the experiments because it only differs from FC-DI by its look-
ahead schema which consists in maintaining arc-consistency during search.

4.1 The Search

FC-DI is typically a 2-way-branching depth first search except that it branches
over subsets of DI values. At each choice point, FC-DI selects a non instantiated
variable xi, and computes the partition Δi = {Δi,1, . . . , Δi,s} of Di based on
DI. During search, the order in which the variables are considered suffices to
compute Δi because the variables that precede xi are already known when xi

is processed. Hence, the method do not fix a predefined variable ordering what
will allow the use of dynamic variable ordering. Note that the computation of
the Δi, i : 1, . . . , n is carried out dynamically at each choice point in order to
increase the opportunities of DI.

The algorithm selects a subset Δi,k in the domain partition Δi and reduces
Di to Δi,k (see line 7). Then function Propagate is called. At this point, xi is
considered as an instantiated variable and is discarded from the current sub-
problem even if its domain is not reduced to a singleton. If no empty domain is
encountered, then the algorithm performs a recursive call to process the future
variables. Else, it considers the other subsets in Δi within the second recursive
call. If the two recursive calls return no solution, the algorithm backtracks to the
immediately preceding variable. We show in the next paragraph that if FC-DI
succeeds to consider all the variables then a solution bundle [10] is found.

Function 6. FC–DI(X, D, C)

1. if X = ∅ then
2. return(D)
3. else
4. xi ←− Select(X)
5. Δi ←− DI–Partition(xi, X, D, C)

206 W. Naanaa

6 Δi,k ←− Select(Δi)
7. Di ←− Δi,k

8. Propagate(xi, X, D, C)
9. if no empty domain then
10. I ←− FC–DI(X − {xi}, D, C)
11. if I = ∅ then
12. return(I)
13. Restore(D)
14. return(FC–DI(X, D − Δi,k, C))

4.2 Constraint Propagation

The potential of DI as a means of improving search efficiency may be even greater
if some level of local consistency is maintained during search. For simplicity, we
chose to show how to exploit DI within the Forward-Checking (FC) [7]. To
specify the look-ahead scheme performed by FC-DI, we need to distinguish past
and future variable. A past variable is a variable which has already been assigned
a specific subset of its domain. A future variable is a variable that has not been
instantiated yet. The invariant to be maintained by FC-DI during search is the
same as in FC, that is every arc of the constraint graph whose target node
represents a past variable must be arc-consistent. This is ensured by procedure
Propagate which is depicted below. For the sake of simplicity, we assume that
the variables are selected following the natural order of their indices.

Let xi be the current variable. Procedure propagate proceeds in two stages.
In the first stage, all the arcs (xk, xi) are made arc-consistent. Next, Propagate
processes all the arcs (xk, xj) such that xk is a future variable and xj is a past
variable whose domain has been modified in the first stage. It uses ReviseDomain
which is a standard procedure for restoring the arc-consistency of a given arc.

Procedure 7. Propagate(xi, X, D, C)

1. Q ←− ∅
2. for each (xj , xi) do
3. if ReviseDomain((xj , xi), X, D, C) then
4. Q ←− Q ∪ {(xk, xj) | j < i < k}
5. for each (xk, xj) ∈ Q do
6. ReviseDomain((xk, xj), X, D, C))

The following two propositions ensure that FC-DI maintains the invariant
specified above.

Lemma 8. Let xi and xi+k be two neighbor variables of a binary CSP such that
all the values in Di+k are DI with respect to the natural order. If (xi, xi+k) is
arc-consistent then all the tuples of Di × Di+k are compatible.

Proof. Suppose there exists (a, b) ∈ Di × Di+k such that a and b are not com-
patible. Then, since all the elements of Di+k are DI with respect to the natural

Directional Interchangeability for Enhancing CSP Solving 207

order and that i < i+k, all the elements of Di+k would be incompatible with a.
This implies that a ∈ Di has no support in Di+k and therefore that (xi, xi+k)
is not arc-consistent which contradicts the hypothesis. ��

Lemma 9. All arcs whose target node represents a past variable are maintained
arc-consistent by FC–DI.

Proof. To begin with, denote by Dj (resp. D′
j) the value domain of xj before

(resp. after) instantiating the current variable xi. We proceed by induction on
the past variable set. After instantiating x1, all arcs (xk, x1) are processed by
procedure Propagate in order to restore the arc-consistency of each of them. At
that stage, the invariant holds again since x1 is the only past variable.

Now assume that xj , j : 1, . . . , i − 1 are all past variables and then that
all the arcs (xk, xj) are arc-consistent before instantiating xi and proceed to
prove that after instantiating xi and executing procedure Propagate, all the arcs
(xk, xj), j : 1, . . . , i, will be arc-consistent.

By instantiating xi, this latter becomes a past variable. Then, for the invariant
to hold, all the arcs ending at xi must be arc-consistent. This is ensured by the
first loop of Propagate. Among these arcs, one can have an (xj , xi) such that xj

is a past variable, (i.e. j < i). Enforcing the arc-consistency of such an arc may
cause the reduction of Dj. As a consequence, if there exists an arc (xk, xj), this
latter may lose its arc-consistency, thereby altering the invariant. We prove in
the following that this can happen only if xk is a future variable (i.e., k > i).

Indeed, suppose xk is a past variable, that is k ≤ i. We distinguish two cases:

1. k = i
In that case, (xj , xk), is arc-consistent after executing the first loop of Prop-
agate. Moreover, since all the elements of D′

k are DI. we can apply lemma 8
to (xj , xk) and deduce that all the pairs of D′

j × D′
k are compatible.

2. k < i
Assume without loss of generality that k < j. Since j < i, according to
the induction hypothesis, (xk, xj) is arc-consistent before instantiating xi.
Moreover, since all the elements of Dj are DI, we can apply lemma 8 to
(xk, xj) and deduce that all value pairs in Dk ×Dj are compatible. It follows
that, since D′

k ⊆ Dk and D′
j ⊆ Dj, all the pairs of D′

k × D′
j are compatible

too.

In both cases, (xk, xj) is already arc-consistent before executing the second
loop of Propagate unless D′

j is empty. Furthermore, (xk, xj) cannot lose its arc-
consistency since there is no disallowed tuple in D′

k ×D′
j. Hence, there is no need

to process any arc whose source node represents a past variable in the second
loop of Propagate. As a result, the second loop cannot reduce the domain of
any past variable. Then, it cannot cause the loss of arc-consistency for an arc
whose end-point is a past variable. Thus, to restore the invariant, the second
loop processes only once the arcs (xk, xj) such that xk a future variable and xj

a past variable whose domains has been modified in the first loop. ��

208 W. Naanaa

In fact, at the end of each complete path constructed by FC–DI, we get in D a
solution bundle [10], that is, a set of solution expressed as a Cartesian product
of subsets of the value domain of each variable.

Theorem 10. Each complete path built by FC–DI yields a solution bundle, i.e.,
all the elements of D1 × . . . × Dn are solutions.

Proof. When FC–DI succeeds to build a complete path, all the variables are
past variables. Then, according to lemma 9, all Di, i : 1, . . . , n are filtered such
that all the arcs of the constraint graph are arc-consistent. From lemma 8 it
follows that, since each arc (xi, xj) such that i < j is arc-consistent and all the
elements of Dj are DI, all the elements of Di ×Dj are compatible This holds for
all 1 ≤ i < j ≤ n. As a result, all the elements of D1 × . . .×Dn are solutions. ��

4.3 An Example

Let us consider the CSP depicted in Fig. 1. All variables have the same value
domain which is equal to {0, 1, 2, 3, 4}. The application of FC-DI to this example
gives the steps detailed in Fig. 2. For simplicity, we did not use any variable or
value ordering heuristic. Note that in step 1 all the values in D1 are DI since
x1 is the first variable in the ordering and then �N(x1, a) = ∅ for all a ∈ D1.
In the next step, the DI based partition of D2 gives Δ2 = {{0, 2, 4}, {1, 3}}. In
a first attempt, D2 is reduced to {0, 2, 4} which yields the removal of 0, 2 and
4 from D1, D3 and D4. All paths explored under this branch lead to an empty
domain. Hence, the algorithm backtracks to x2 and sets D2 to the remaining
element in Δ2 which is {1, 3}. By constraint propagation, the value domains of
D1, D3 and D4 are reduced to {0, 2, 4}. Then the algorithm processes x3 whose
value domain is trivially partionned into Δ3 = {{0}, {2}, {4}} because of the
difference constraint between x3 and x1. The choice of value 0 for x3 leads to a
bundle containing two solutions (see the last step in Fig. 2).

5 Experimental Results

The problems investigated in our experiments are random binary CSPs generated
according to model B, radio link frequency assignment problems (RLFAP), mod-
ified RLFAP and job-shop problems. We compared FC-DI and MAC-DI with FC
and MAC. The arc-consistency algorithm underlying MAC and MAC-DI is AC-
3. The variable ordering heuristic used by all algorithms is min-domain/wdeg.
For value ordering, we used the min-conflict-first heuristic. The evaluation crite-
ria are the number of expanded nodes and CPU time in second. All algorithms
were implemented in C++. They were run in a Windows xp 1.7 GHZ PC having
256 Mb of RAM.

Random Binary CSPs: for random binary CSPs, we experimented on prob-
lems involving n = 30 variables, a uniform domain size of d = 25. The problem
density p1, (i.e. the ratio of the number of constraints present in the constraint

Directional Interchangeability for Enhancing CSP Solving 209

Fig. 1. A binary CSP

Fig. 2. Paths explored by FC-DI when applied to the CSP of Fig. 1

graph over that of all possible constraints), is varied from 0.4 to 0.6 with 0.1
increment step. The constraint tightness p2, (i.e. the ratio of the number of
disallowed tuples over that of all possible tuples), is varied so that we obtain
instances around the peak of complexity, except for problems with p1 = 0.6, we
restricted the tests to under-constrained problems because the execution times
were prohibitively long around the peak of complexity. We used the model B
generator developed by Frost et al. which is available at [1]. According to [15],
we started from p1 = 0.4 in order to avoid flawed instances. It must be em-
phasized, however, that around the peak of complexity, model B instances are
much more difficult to solve than those obtained following model RB which is
a flawless version of model B. The size of samples is 100 problem instances for
each data point. We compared FC against FC-DI which seem to be the best
algorithms on these problems.

For Fig. 3 which reports results expressed as average values of number of ex-
panded nodes and CPU time, the horizontal axis denotes various tightness. The
results indicate that FC-DI outperforms FC. This advantage is less and less sig-
nificant as we move toward dense problems. For the densest problems (p1 = 0.6),
both algorithms are very close. Nonetheless, FC-DI remains almost always faster
that FC.

RLFAP and Modified RLFAP: We considered the scen11 instance and in-
stances obtained from scen11 by removing the highest frequencies denotes by
scen11-f2 to scen11-f10 [3]. We compared MAC against FC-DI on these instances
because on the one hand MAC outperformed FC and on the other hand FC-DI
gave better results than MAC-DI.

210 W. Naanaa

0.4 0.41 0.42 0.43 0.44 0.45
0

2

4

6

8

10

12
x 10

5

tightness

N
od

e
V

is
ite

d

n = 30, d = 25, p
1
 = 0.4

FC
FC−DI

0.4 0.41 0.42 0.43 0.44 0.45
0

5

10

15

20

25

30

35

tightness

C
P

U
 ti

m
e

in
 s

ec
.

n = 30, d = 25, p
1
 = 0.4

FC
FC−DI

0.33 0.34 0.35 0.36 0.37 0.38
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

tightness

N
od

e
V

is
ite

d

n = 30, d = 25, p
1
 = 0.5

FC
FC−DI

0.33 0.34 0.35 0.36 0.37 0.38
0

20

40

60

80

100

tightness

C
P

U
 ti

m
e

in
 s

ec
.

n = 30, d = 25, p
1
 = 0.5

FC
FC−DI

0.285 0.29 0.295 0.3 0.305 0.31
0

1

2

3

4

5

6

7
x 10

6

tightness

N
od

e
V

is
ite

d

n = 30, d = 25, p
1
 = 0.6

FC
FC−DI

0.285 0.29 0.295 0.3 0.305 0.31
0

50

100

150

200

tightness

C
P

U
 ti

m
e

in
 s

ec
.

n = 30, d = 25, p
1
 = 0.6

FC
FC−DI

Fig. 3. Average search effort for FC and FC-DI. Mean number of expended nodes and
mean CPU time is reported.

As can be seen in Fig. 4, FC-DI is clearly better than MAC regarding CPU
time, although the reverse is true if we consider the number of expanded nodes.
But the latter criterion is less significant since we compared FC-DI against MAC
which spends much more time at each node of the search tree.

Job-shop Problems: For the job-shop problems, we investigated the js-taillard-
15-by-15-105 instances [4]. The experiment involves ten satisfiable instances gen-
erated according to the Taillard model [14]. In the resulting CSPs, the variables
represent the tasks to be scheduled, the domain values represent the possible
start-times of the different tasks and the constraints are precedence and resource
constraints. To cope with the large domain values, (more than one thousand
values), which caracterise these instances, we resorted to a limited discrepancy
search [8]. Hence, we immersed the MAC and the MAC-DI algorithms in a loop

Directional Interchangeability for Enhancing CSP Solving 211

expended nodes time (in sec.)
instance MAC FC-DI MAC FC-DI

scen11 (sat) 1.2K 7.3K 1 1
scen11-f10 1.3K 1.9K 1 1
scen11-f9 22K 40K 11 5
scen11-f8 38K 43K 20 6
scen11-f7 284K 482K 99 49
scen11-f6 394K 580K 141 64
scen11-f5 2022K 3150K 713 313
scen11-f4 12M 18M 3564 1682
scen11-f3 38M 69M 11571 6726
scen11-f2 – 221M >30K 16.7K

Fig. 4. Search effort for MAC and FC-DI in terms of thousands of expended nodes and
execution time (in second) obtained on RLFAP and modified RLFAP instances

expended nodes time (in sec.)
instance MAC FC-DI MAC FC-DI

tai-15-by-15-105-0 – 25907 – 286
tai-15-by-15-105-1 18859 9710 183 92
tai-15-by-15-105-2 – 171615 – 1563
tai-15-by-15-105-3 – 93180 – 948
tai-15-by-15-105-4 – 26394 – 271
tai-15-by-15-105-5 – 176110 – 1532
tai-15-by-15-105-6 27073 644429 213 6183
tai-15-by-15-105-7 – – – –
tai-15-by-15-105-8 1183674 248104 7261 2332
tai-15-by-15-105-9 830122 937 6308 13

Fig. 5. Search effort for LDS-MAC and LDS-MAC-DI. Number of expended nodes and
CPU time are reported. A dash indicates a timeout after 3 hours.

which incrementally varies the number of allowed discrepancies. Discrepancies
are defined with regard to the min-conflit-first value ordering heuristic. The re-
sulting searches are denoted by LDS-MAC and LDS-MAC-DI.

On these instances, the results are somewhat chaotic. However, LDS-MAC-
DI is clearly more efficient than LDS-MAC as it can be seen in Fig. 5. Indeed,
within three hours per instance, LDS-MAC solved only four instances over ten,
while LDS-MAC-DI solved nine instances. Moreover, on instances solved by both
algorithms, LDS-MAC-DI is faster on three instances over four.

6 Related Work

Many variations of neighborhood interchangeability have been studied. In [9],
Haselböck proposed a weak form of interchangeability which is limited to a single
constraint and showed that it can be useful for enhancing filtering algorithms.

212 W. Naanaa

In [16], the authors proposed conditional interchangeability, which is intended
to strengthen the pruning ability of NI. A condition is a restriction on the domain
of neighboring variables whose role is to capture interchangeably in a limited
situation that cannot be detected by NI.

Bowen and Likitvivatanavong introduced domain transmutation a concept
which is closely related to interchangeability [2]. This approach consists in split-
ting domain values into several “sub-values” or merging values so that inter-
changeability is more intensively exploited. The authors reported that their ap-
proach is particularly advantageous in finding all solutions.

The concept of neighborhood interchangeability was also applied to non-
binary CSPs [11]. The authors proposed an algorithm for computing NI values
which takes into account non-binary constraints. They also described how to in-
terleave their algorithm with search in order to obtain a search which performs
dynamic bundling.

While the above approaches consider on all the neighboring variables to deter-
mine interchangeable values, our approach examines past variables only. It can
therefore be classified as a look-back scheme for exploiting interchangeability.
From the practical point of view, directional interchangeability do not enable
the removal of redundant values but in compensation it allow to attempt more
than one value at a single branch of the search tree.

7 Conclusion

This paper presented directional interchangeability (DI), a weak form of neigh-
borhood interchangeability that assumes a variable ordering and uses this order
to focuses on a subset of the neighboring variables. We presented an effective
algorithm for determining DI values and described how to integrate it into the
Forward-checking algorithm to get a solving algorithm (FC-DI) that assigns to
variables subsets of their respective domains at each branch of search.

An experimental study carried on numerous binary CSPs showed that direc-
tional interchangeability is a concrete technique that repays its overhead. Indeed,
FC-DI defeats the standard FC and MAC on many random and structured prob-
lems experimentally proving that exploiting DI values is worth the effort.

A natural extension of this work is to consider directional substitutability.
This extension of the present work is motivated by the fact that directional
substitutability may occur more frequently than directional interchangeability.
Another direction consists in exploiting directional substitutability in the frame-
work of non-binary CSPs. In the case of a k-ary CSP, determining direction-
ally substitutable values amounts to testing inclusions between sets containing
(k − 1)-tuples which is not a prohibitive task.

References

1. Frost, D., Bessière, C., Dechter, R., Régin, J.C.: Random uniform CSP generators.
http://www.lirmm.fr/ b̃essiere/generator.html.

2. Bowen J., Likitvivatanavong, C.: Domain transmutation in constraint satisfaction
problems. Proceedings of AAAI-04 2004.

Directional Interchangeability for Enhancing CSP Solving 213

3. Cabon, B., De Givry, S., Lobjois, L. Schiex, T., Warners, J. P.: Radio link frequency
assignement. Constraints 4 (1) 79–89.

4. http://www.cril.univ-artois.fr/ lecoutre/research/benchmarks/benchmarks.html.
5. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction prob-

lems. Artificial Intelligence 34 (1988) 1–38.
6. Freuder, E. C.: Eliminating interchangeable values in constraint satisfaction prob-

lems. Proceedings of AAAI-91 (1991) 227–233.
7. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14 (1980) 263–313.
8. Harvey, W., Ginsberg, M.: Limited discrepancy search. In Proceedings of the 14th

International Joint Conference On Artificial Intelligence (1995) 607–613.
9. Haselböck, A.: Exploiting interchangeability in constraint satisfaction problems. In

Proceedings of IJCAI-93 (1993) 282–297.
10. Ginsberg, M.L., Parkes, A. J., Roy, A.: Super-model and robustness. Proceeding

of AAAI-98 Madison Wisconsin 1998.
11. Lal, A., Choueiry, B.Y., Freuder, E.C.: Neighborhood interchangeability and dy-

namic bundling for non-binary finite CSPs. Proceedings of AAAI-05 (2005) 397–
404.

12. Sabin, D., Freuder, E.C: Contradicting conventional wisdom in constraint satis-
faction. Proceedings of the 11th European Conference on Artificial Intelligence
(1994).

13. Weigel R., Faltings, B. V.: Compiling constraint satisfaction problems. Artificial
Intelligence 115 (2) 257–287.

14. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64 (1993) 278–285.

15. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
Journal of Artificial Intelligence Research 12 (2000) 93–103.

16. Zhang, Y., Freuder, E.C.: Conditional interchangeability and substitutability. Pro-
ceedings of Fourth International Workshop on Symmetry and Constraint Satisfac-
tion Problems (SymCon04) Toronto 2004.

A Continuous Multi-resources cumulative
Constraint with Positive-Negative Resource

Consumption-Production

Nicolas Beldiceanu and Emmanuel Poder

École des Mines de Nantes, LINA FRE CNRS 2729,
4 rue Alfred Kastler, La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France.

{Nicolas.Beldiceanu,Emmanuel.Poder}@emn.fr

Abstract. This article first introduces an extension of the classical cu-
mulative constraint: each task is no more a rectangle but rather a se-
quence of contiguous trapezoid sub-tasks with variable duration and
heights. The resource function is no more constant but is a positive
or negative piecewise linear function of time. Finally, a task is no more
pre-assigned to one resource, but to a task corresponds a set of possi-
ble resource assignments. In this context, this article provides an O(p ·
(log p + q)) for computing all the cumulated resource profiles where q is
the number of resources and p is the total number of trapezoid sub-tasks
of all the tasks.

1 Introduction

Most of the work in resource-constrained scheduling is dedicated to problems
dealing with tasks that use a constant amount of resource during their exe-
cution [3]. However, application fields handling continuously divisible resources
like water, oil or electric power, prompt at considering more complex resource
consumption or production profiles [8], [6], [11] and [7].

A first contribution of this article is a task model that unifies the two tasks
models introduced in [1] and [9]. Each task is no more a rectangle but rather a
sequence of contiguous trapezoid sub-tasks. The duration and heights of a trape-
zoid sub-task are variables over intervals and express a positive or a negative
linear resource function of time. Hence, a trapezoid sub-task has positive or neg-
ative variable heights and a positive variable duration. A task is non–preemptive,
needs for its execution to be assigned to exactly one resource, and to each task
corresponds a set of possible resource assignments. Finally, a task must start
during a given time interval (due, for instance, to a release date, or to the avail-
ability of the resource). Symmetrically, it must also finish during a given time
interval. Finally, The duration of each sub-task belongs to a specified intervals.

The main contribution is, for a given resource, an effective algorithm in O(p ·
(log p + q)) for computing a lower and upper estimation of its final resource
profile where q is the number of resources and p is the total number of trapezoid

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 214–228, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Continuous Multi-resources cumulative Constraint 215

sub-tasks of all the tasks. These two estimations will be respectively called the
minimum and maximum cumulated resource’s profiles. The minimum resource
utilisation profile provides an easy way for checking that a given partial schedule
(i.e., a schedule where the tasks and sub-tasks variables are not yet all fixed) is
not feasible according to the fact that one should not exceed an overall given
resource limit. Similarly, the maximum resource utilisation profile allows to check
that one can effectively reach, at specific time intervals, a given level of minimum
resource utilisation. Moreover, these two profiles coincide when all the tasks are
completely fixed. The minimum resource utilisation profile is made up from the
sum of all minimum task’s profiles, where the minimum task’s profile represents,
for each time point, the smallest possible contribution of the task to a resource
profile.1 For a given task T including possibly positive and negative heights, the
computation of its minimum task profile is more complex than just determining
a compulsory part [5]. In fact, we first fix the heights of each sub-tasks of T
to their minimum value and then consider separately its positive sub-tasks T+

and its negative sub-tasks T−. For the former, we compute its compulsory part
[9] (i.e., the intersection of all feasible schedules of T +) and for the latter its
envelope (i.e., the union of all feasible schedules of T−) and recombine them.
Note that the method relies on the fact property the compulsory part of T+ and
envelope of T− don’t overlap each other over time.2

The article is organised as follows: Section 2 introduces the piecewise linear
cumulatives pwl constraint and the associated new task model. Section 3 presents
different possible contributions of a task to the utilisation of a resource: the
compulsory part, the envelope, and finally, the minimum and maximum task’s
profiles. Section 4 first defines, for each resource, its minimum and maximum
cumulated resource’s profiles. Then, it describes a sweep algorithm for computing
them from all minimum and maximum task’s profiles. All derived algorithms are
polynomial in the total number of trapezoid sub-tasks.

2 The Piecewise Linear cumulatives pwl Constraint

We consider a set of q renewable resources where the kth resource has a maximum
capacity Ck ≥ 0 and a set of n non–preemptive tasks. Each task needs for its
execution to be assigned to exactly one resource within a given subset (that
depends of the considered task) of the q resources. Finally, each task is composed
of a sequence of contiguous trapezoid sub-tasks which expresses a piecewise linear
function of resource requirement. Within this context, this section introduces the
task model as well as the corresponding constraint.

2.1 Task Model

After introducing the task model used throughout this article, this section presents
the notion of feasible instance of a task as well as the notion of resource function.
1 The maximum resource utilisation profile and the maximum task’s profile are defined

in a similar way.
2 The computation of the maximum task’s profile is similar.

216 N. Beldiceanu and E. Poder

Definition 1. A task Ti is defined by a quintuple (sTi , tdTi , eTi ,SeqTi
, aTi)

where:

– The variables3 sTi , tdTi and eTi represent respectively the start, the duration
and the end of task Ti.

– SeqTi
is a sequence of contiguous trapezoid of pi sub-tasks 〈T 1

i , T 2
i , · · · , T pi

i 〉
where the trapezoid sub-task T j

i (j = 1..pi) is defined by a triple
(shT j

i
, dT j

i
, ehT j

i
) where the variables shT j

i
, dT j

i
and ehT j

i
respectively rep-

resent the start height of T j
i (i.e., the resource requirement at its start),

the duration of T j
i and the end height of T j

i (i.e., the resource require-
ment at its end). Moreover, we assume that (shT j

i
≥ 0 ∨ shT j

i
≤ 0) and

(ehT j
i

≥ 0 ∨ ehT j
i

≤ 0)4 and finally that dT j
i

≥ 0.
– The variable aTi represents the resource assignment of task Ti and takes its

value in a finite set of integer values dom(a)5.

sTi
is called the release date (earliest starting time) while eTi is the due date

(latest ending time) of Ti. sTi and eTi
are respectively the latest starting time

and the earliest finishing time of Ti.

Example 1. The fixed task T , defined by the quintuple
(s, td, e,Seq, a) = (1, 7, 8, 〈(2, 3, 3), (3, 1, 1), (0, 1, −1), (0, 1, 0), (3, 1, 0)〉, 1),

starts at instant 1, has a total duration of 7 and ends at instant 8 and consists
of 5 contiguous trapezoid sub-tasks. Moreover, T is assigned to resource 1 and
its piecewise linear resource function (resource requirement) hT is defined by:
hT (t) = 1/3 · (t − 1) + 2 for t ∈ [1, 4[, hT (t) = −2 · (t − 4) + 3 for t ∈ [4, 5[,
hT (t) = −(t−5) for t ∈ [5, 6[, hT (t) = 0 for t ∈ [6, 7[and hT (t) = −2 ·(t−7)+2
for t ∈ [7, 8[.

Definition 3 introduces the notion of fixed feasible task which is a fixed task’s
instance verifying the constraint

∑pi

j=1 dT j
i

= td ∈ [tdTi
.. tdTi]. For this purpose

we first introduce the notion of fixed feasible trapezoid sub-task.

Definition 2. Given a task Ti defined by (sTi , tdTi , eTi ,SeqTi
, aTi) and a given

total duration td ∈ [tdTi
.. tdTi], a fixed feasible trapezoid sub-tasks sequence of

the task Ti with total duration td is such that all the variables shT j
i
, dT j

i
, ehT j

i

(j = 1..p) are fixed within their respective range and satisfy
∑pi

j=1 dT j
i

= td.

Definition 3. Given a task Ti defined by (sTi , tdTi , eTi ,SeqTi
, aTi) and given

Seq, a fixed feasible trapezoid sub-tasks sequence of Ti, a fixed feasible instance
of Ti is such that sTi and eTi are fixed within their respective possible values and
SeqTi

is fixed to Seq. We note ΦTi the set of all the fixed feasible tasks of Ti.

3 A variable v ranges over the interval of consecutive integer values [v, v].
4 The signs of sh

T
j
i

and sh
T

j
i

are initially known.
5 Without loss of generality all variables, except the resource assignment, could be

continuous variables.

A Continuous Multi-resources cumulative Constraint 217

Example 2. Throughout this article, we will consider the following example where
Tasks is the collection of the four tasks T1, T2, T3 and T4 defined as follows:

T1 = (1..2, 4..5, 5..6, 〈(1..2, 2..3, 2), (−1, 2, −1)〉, {1, 2})
T2 = (1..2, 6, 7..8, 〈(3, 2, 2), (−2, 2, −1), (1, 2, 1)〉, 1)
T3 = (0..3, 6, 6..9, 〈(1, 2, 2), (1, 2, 1), (1, 2, 0)〉, 1)
T4 = (1..6, 2, 3..8, 〈(−1, 2, −1)〉, {1, 2})

All the starts and ends of tasks T1 to T4 are not fixed as well as the first
trapezoid sub-task of T1. T1 and T4 are not yet assigned. Figure 1 provides
all the fixed feasible trapezoid sub-task sequences associated to tasks T1 to T4.
Observe that task T1 has four feasible sequences (two of duration 4 (Seq1,1 and
Seq1,3) and two of duration 5 (Seq1,2 and Seq1,4)) while the other tasks have
each only one feasible sequence. Finally, Figure 2 provides the six fixed feasible
task’s instances (I1,k (k = 1..6)) of T1.

-1

-2

0

1

2

3
1 2 3 4 5 6

Seq2

-1

0

1

2

-1

0

1

2

1 2 3 4 1 2 3 54

Seq4

Seq1,1

Seq1,3 Seq1,4

Seq1,2

-1

0
1 2

0

1

2
1 2 3 4 5 6

Seq3

Fig. 1. Feasible trapezoid sub-tasks sequences of the tasks used throughout the article

Definition 4. We note stT j
i

the start of T j
i (stT 1

i
= sTi). To any

I ∈ ΦTi is associated a resource function hI(t) defined on [sTi , eTi [by:
∀ t ∈ [sTi , eTi [, ∃!j ∈ {1, 2, ..., pi} such that t ∈ [stT j

i
, stT j

i
+ dT j

i
[. Then

hI(t) =
eh

T
j
i
−sh

T
j
i

d
T

j
i

(
t − stT j

i

)
+ shT j

i
and slT j

i
=

eh
T

j
i
−sh

T
j
i

d
T

j
i

is the slope value of

the trapezoid sub-task T j
i . If ΦTi is reduced to one instance (i.e., Ti is fixed) then

we note hTi the resource function of Ti.

Example 3. (continuation of Example 2) The feasible task’s instance I1,1
(see Figure 2) associated with T1 is (1, 4, 5, 〈(1, 2, 2), (−1, 2, −1)〉, {1, 2}) =
(1, 4, 5,Seq1,1, {1, 2}). Its resource function is defined by hI(t) = 1/2 · (t − 1)+ 1
for t ∈ [1, 3[, hT (t) = −1 for t ∈ [3, 5[.

The next definition introduces the notion of non–negative and non–positive task
as well as the notion of positive, negative and null trapezoid sub-tasks.

Definition 5. A task Ti is non–negative if the heights of each trapezoid sub-task
are non–negative (i.e., ∀ j = 1..pi, shT j

i
≥ 0 and ehT j

i
≥ 0) and is non–positive if

the heights of each trapezoid sub-tasks are non–positive (i.e., ∀ j = 1..p, shT j
i

≤ 0

and ehT j
i

≤ 0). A trapezoid sub-task is positive if its two heights are non–negative

218 N. Beldiceanu and E. Poder

-1

0

1

2

1 2 3 4
t

5 6

-1

0

1

2

1 2 3 4
t

5 6

Seq1,1

Seq1,3

 I1,1
 h (t)

 I1,3
 h (t)

-1

0

1

2

1 2 3 4
t

5 6

-1

0

1

2

1 2 3 4
t

5 6

Seq1,4

Seq1,2

 I1,2
 h (t)

 I1,5
 h (t)

-1

0

1

2

1 2 3 4
t

5 6

-1

0

1

2

1 2 3 4
t

5 6

Seq1,1

Seq1,3

 I1,3
 h (t)

 I1,6
 h (t)

Fig. 2. Fixed feasible instances of T1

and not both null and is negative if its two heights are non–positive and not both
null. Otherwise the trapezoid is null (shT j

i
= shT j

i
= ehT j

i
= ehT j

i
= 0).

Example 4. (continuation of Example 3) T3 is a non–negative task while T4 is
a non–positive task. T 1

1 is a positive trapezoid sub-task while T 2
1 is a negative

trapezoid sub-task.

2.2 The Piecewise Linear Cumulative cumulatives pwl

The piecewise linear cumulative constraint has the form cumulatives pwl(Tasks,
Resources,Constraint) where:

– Tasks is a collection of tasks 〈T1, T2, · · · , Tn〉 where the task Ti (i = 1..n) is
defined by a quintuple (sTi , tdTi , eTi ,SeqTi

, aTi).
– Resources is a set of q integers C1, C2, · · · , Cq where Ck ≥ 0 (k = 1..q) is

the resource capacity of the kth resource if Constraint =′≤′ or the minimum
level of the kth resource if Constraint =′≥′ .

– Constraint6 is the less or equal (i.e., ≤) or the greater or equal (i.e., ≥)
constraint.

The constraint cumulatives pwl holds if the following conditions are true:

1. ∀ i = 1..n, sTi + tdTi = eTi (i.e., the end of a task is equal to the sum of its
start and its duration),7

2. ∀ i = 1..n,
∑pi

j=1 dj = tdTi (i.e., the total duration of a task is equal to the
sum of the durations of its trapezoid sub-tasks),

3. Case Constraint = ′ ≤′: (∀ k = 1..q), (∀ t ∈ IR),
∑

i/aTi
={k} hT (t) ≤ Ck

(i.e., for each resource k and for each instant t, the sum of the values taken
at t by the resource functions that are assigned to the resource k, is less than
or equal to the capacity Ck of the resource k).

6 Observe that, currently, multiple execution modes for a task cannot be directly
defined within the cumulatives pwl constraint.

7 When sTi , tdTi and eTi belong to specific intervals, none of them is redundant.

A Continuous Multi-resources cumulative Constraint 219

Case Constraint = ′ ≥′ : (∀ k = 1..q), (∀ t ∈ IR such that ∃Ti/t ∈ [sTi , eTi [),∑
i/aTi

={k} hT (t) ≤ Ck (i.e., for each resource k and for each instant t such
that at least one task is executed at t, the sum of the values taken at t by
the resource functions of the tasks that are assigned to the resource k, is
greater than or equal to the minimum level Ck of the resource k).

Example 5. (continuation of Example 2) The constraint cumulatives pwl(
〈 (2, 4, 6, 〈(1, 2, 2), (−1, 2, −1)〉, 2), (1, 6, 7, 〈(3, 2, 2), (−2, 2, −1), (1, 2, 1)〉, 1)

(3, 6, 9, 〈(1, 2, 2), (1, 2, 1), (1, 2, 0)〉, 1), (1, 2, 3, 〈(−1, 2, −1)〉, 1) 〉
〈2, 2〉 , ≤) holds.

3 Minimum and Maximum Cumulated Resource’s
Profiles

Given a resource r, this section shows how to compute its minimum (respectively
maximum) cumulated resource’s profiles for r. They are in fact determined by
cumulating all minimum (maximum) task’s profiles. For this purpose, we first
remind (3.1 and 3.2) some results, proved by [9], for computing the compul-
sory part of a task and then we extend them to the computation of the envelope
(3.3).8 Then, in 3.4, we explain how to use simultaneously the notions of compul-
sory part and envelope to compute the minimum and maximum task’s profiles.
Finally, in 4.1, we use the previous notions in order to compute the minimum
and maximum resource’s profiles for a given resource.

To compute the minimum task’s profiles of a given task T , we first need to in-
troduce two specific instances of T that are its earliest and its latest
schedules.

3.1 Earliest and Latest Schedules of a Task T

Let T min and T max denote the earliest and the latest schedules of T and stT j

and stT j (j = 1..p) respectively denote the starts of the trapezoid sub-task T j

in the schedules T min and T max. Poder et al. have shown in [9] how to compute
stT j and stT j with a complexity of O(p). To obtain T min the task T is started
at its earliest date sT ; then, stT 1 , stT 2 , · · · , stT p are successively fixed as small
as possible with respect to the feasibility of the end of the task. The following
recursive formulae computes stT j (j = 1..p + 1):
stT 1 = sT and ∀ j = 1..p, stT j+1 = max

(
stT j + dT j , eT −

∑p
k=j+1 dT k

)
.

T max is obtained in a similar way i.e.,:
stT 1 = sT and ∀ j = 1..p, stT j+1 = min

(
stT j + dT j , eT −

∑p
k=j+1 dT k

)
.

Observe that stT p+1 = eT and stT p+1 = eT .

8 Within the context of a non–negative task, its compulsory part and its envelope can
be respectively interpreted as the lower and upper bounds of the task (i.e., at each
instant they provide the minimum and maximum heights of the task).

220 N. Beldiceanu and E. Poder

3.2 Compulsory Part of a Non–negative Task

The compulsory part was initially introduced by Lahrichi [5], for a rectangle task
as the intersection of all feasible schedules of the task. As the domains of the
variables of the task get more and more restricted, the compulsory part will
increase until becoming a schedule of the task. Within rectangle tasks, [4] use
the notion of compulsory part to tighten lower bounds for resource-constrained
scheduling problems, while [2] use the compulsory part in a set of propagation
rules to solve cumulative constraints.

Here, we consider a non–negative task T . Nevertheless, observe that comput-
ing the compulsory part of a non–positive task is symmetric: in fact, if T is
defined, for any t, by hT (t) = −hT ′(t) then, for any t, hCP (T ′)(t) = −hCP (T)(t).

Note that it is sufficient, in the computation of the compulsory part of T ,
to consider only feasible instances of T where heights are minimum. So in the
following, a task T has its heights fixed at their minimum.

Definition 6. The compulsory part CP (T) of a task T is not empty if and
only if sT < eT . Its resource function hCP (T) satisfies for any t ∈ [sT , eT [
hCP (T)(t) = infI∈ ΦT (hI(t)) and hCP (T)(t) = 0 elsewhere.

In order to compute the compulsory part of a task, we first need to introduce
the notion of valley in a sequence of trapezoid sub-tasks and the associated task
named the Level Valley Task.

Definition 7. Let Hmin
T = h1h2 · · · h2p = shT 1ehT 1shT 2ehT 2 · · · shT pehT p be

the sequence of all start and end minimum heights of trapezoid sub-tasks of T .
An height hk ∈ Hmin

T (1 < k < 2p) defines an end of valley if and only if
∃ j (1 < j ≤ k) such that hj−1 > hj and hj = hj+1 = · · · = hk and hk < hk+1
(a strict decrease in the resource function is followed by a strict increase).

Result 1. Let hj1hj2 · · · hjv be the possibly empty sub-sequence of Hmin
T

of all heights of trapezoid sub-tasks of T that correspond to the ends
of the v valleys. Let LV T (T), called the Level Valley Task of T ,
be the task defined for any t ∈ [sT , eT [by hLV T (T)(t) =

min
(
+∞,

{
hjk

such that t ∈
[
st

T � jk
2 �+1

, st
T � jk

2 �+1

[})

Then, CP (T) = T min
⋂

T max
⋂

LV T (T) i.e., for any t ∈ [sT , eT [,
hCP (T)(t) = min

(
hT min(t), hT max(t), hLV T (T)(t)

)
and is null elsewhere. If

T has no valley (v = 0) then, for any t ∈ [sT , eT [hCP (T)(t) =
min (hT min(t), hT max(t)).

Example 6. The left part of Figure 3 illustrates the computation of CP (T) where
T has two valleys (see Part (A)). They correspond to the start stT 2 of T 2 (h1 =
shT 2) and the end stT 4 of T 3 (h2 = ehT 3). Parts (A) and (B) give respectively
T min and T max. Then, Part (C) shows LV T (T) which is defined by hLV T (T)(t) =
+∞ for [sT , stT 2 [, hLV T (T)(t) = h1 for t ∈ [stT 2 , stT 4 [, and hLV T (T)(t) = h2 for
t ∈ [stT 4 , stT 2 [

⋃
[stT 2 , eT [(as h1 > h2). Finally, Part (D) shows the computation

of CP (T) as the intersection of T min, T max and LV T (T).

A Continuous Multi-resources cumulative Constraint 221

Complexity for computing the compulsory part. Within [9], Poder et al.
provide an algorithm for computing the compulsory part of a task, made of p
trapezoid sub-tasks and v > 0 valleys, in O(p+ v · logv). In fact, T min and T max

are computed in O(p) (i.e., the complexity for computing the two sequences stj

and st
j(j = 1..p+1)), LV T (T) is computed using a heap structure in O(v ·log v).

Then, the intersection of T min, T max and LTT (T) is obtained, by scanning them
in parallel, in O(p+ v). Hence, a complexity of O(p+ v · log v) that is O(p log p).
If v = 0 the complexity is O(p).

3.3 Envelope of a Non–negative Task

The envelope of a task is the union of all feasible schedules of the task. As the
domains of the variables of the task get more and more restricted, the envelope
will decrease until it becomes a schedule of the task. In the context of mul-
tiple resources, a task has the same envelope on each resource where it may
be potentially assigned and an empty envelope elsewhere. Here, we consider a
non–negative task T and we compute its envelope Env(T). Nevertheless, ob-
serve that computing the envelope of a task where the heights of each trapezoid
sub-task are non–positive is symmetric. in fact, if T is defined, for any t, by
hT (t) = −hT ′(t) then, for any t, hEnv(T ′)(t) = −hEnv(T)(t).

Definition 8. The envelope Env(T) of a task T is such that its resource func-
tion hEnv(T) satisfies hEnv(T) = supI∈ ΦT (hI(t)) for any t ∈ [sT , eT [and
hEnv(T)(t) = 0 elsewhere.

Note that it is sufficient, in the computation of the envelope of T , to consider
only feasible schedules of T where the heights of each trapezoid sub-task are
fixed at their maximum. So, in this section, a task T has its heights fixed at
their maximum.

As we have introduced, for computing the compulsory part of a task, the
notion of valley in a sequence of trapezoid, we introduce now, for computing the
envelope, the notion of top and the associated task named the Level Top Task.

Definition 9. Let Hmax
T = h1h2 · · · h2p = shT 1ehT 1shT 2ehT 2 · · · shT pehT p be

the sequence of all start and end maximum heights of trapezoid sub-tasks of T .
A height hk ∈ Hmax

T (1 ≤ k ≤ 2p) defines an end of a top if and only if
∃ j(1 ≤ j ≤ k) such that hj−1 < hj and hj = hj+1 = · · · = hk and hk > hk+1
with the convention that h0 = h2p+1 = 0.

Result 2. Let hj1hj2 · · ·hjw be the sub-sequence of HT max of all heights of T
that define a top. The Level Top Task LTT (T) of T is the task defined by:
∀ t ∈ [sT , eT [, hLV T (T)(t)=max

(
0,

{
hjk

such that t ∈
[
st

T � jk
2 �+1

, st
T � jk

2 �+1

[})

(with the convention that sT p+1 = e). The envelope of T is obtained by comput-
ing the union of T min, T max and LTT (T) i.e., hEnv(T) satisfies hEnv(T)(t) =
sup(hT min(t), hT max(t), hLTT (T)(t)) for any t ∈ [sT , eT [and 0 elsewhere.

The demonstration of Result 2 is similar to the proof of Result 1 so is omitted.

222 N. Beldiceanu and E. Poder

Example 7. The right part of Figure 3 illustrates the computation of the envelope
of a task T that has three tops with heights h1 = shT 1 , h2 = ehT 2 and h3 = ehT 4

(see part (E)). They correspond to the start sT = stT 1 of the task, the end stT 3

of the second sub-task and the end eT = stT 4 of the task T . Parts (E) and (F)
give respectively T min and T max. Then, Part (G) shows LTT (T) that is defined
by hLTT (T)(t) = h1 for t ∈ [sT , sT [, hLV T (T)(t) = h2 for t ∈ [stT 3 , eT [(as
h2 < h3 on [eT , stT 3 [), and hLV T (T)(t) = h3 for t ∈ [eT , eT [. Finally, part (H)
shows the computation of Env(T) as the union of T min, T max and LTT (T).

Time
s es e

 (B)

Tmax

Time
est2 st4

Ends of
valleys

Resource function

e=st5

(A)

Tmin

Time
st2 st4

eh3sh2

 (C)

LVT(T)

Time

+

s=st1

s

est2 st4s s st2 st4

st3

Tops of
valleys

Resource function

s=st1 e=st4

(E)

Tmin

Time
st2 st3

sh1

eh4
eh2

Time
s es e

(G)

LTT(T)

Time
s est3 st3s

 (F)

Tmax

Time
s est2 st3

e

 (D)

CP(T)

(G)

LTT(T)

Fig. 3. Computation of the compulsory part and the envelope of a task

Complexity for computing the envelope of a task. A task T has always
at least one top except if T satisfies ∀ t, hT (t) = 0. The algorithm to compute
the envelope is similar to the one given for the computation of the compulsory
part. So it has a complexity of O(p + w · log w) that is O(p log p).

3.4 Minimum and Maximum Task’s Profiles of Any Task T

We now explain how to compute the minimum and maximum task’s profiles of
a task T . Let us first introduce this two notions formally.

Definition 10. Let mP (T) (resp. MP (T)) denote the minimum (resp. max-
imum) task’s profile of the task T . Its resource function hmP (T) (resp. hMP (T)
satisfies, for any t ∈ [sT , eT [, hmP (T)(t) = infI∈ ΦT (hI(t)) (resp. hMP (T)(t) =
supI∈ ΦT (hI(t)).

A Continuous Multi-resources cumulative Constraint 223

Note that it is enough, in the computation of mP (T) (resp. MP (T)) to con-
sider only feasible schedules where all trapezoid’s heights of T are fixed at their
minimum (resp. maximum).

Assume now that heights of T are fixed. Then, let T + (resp. T−) denote the
task made from T by replacing each negative (resp. positive) trapezoid sub-task
T j of T by a null trapezoid sub-task and same duration as the replaced trapezoid
sub-task (we merge consecutive null sub-tasks in a single sub-task).

The next result expresses the resource function of the minimum (resp. maxi-
mum) task’s profile of a task T according to the resource functions of the com-
pulsory part of T + (resp. T−) and of the enveloppe of T− (resp. T +).

Result 3. Let t be a given time point.
If T is assigned to a resource then, on that resource

{
hmP (T)(t) = hCP (T+)(t) + hEnv(T −)(t),
hMP (T)(t) = hCP (T −)(t) + hEnv(T+)(t).

else, on each resource where T may be assigned
{

hmP (T)(t) = hEnv(T −)(t),
hMP (T)(t) = hEnv(T+)(t).

Moreover, for any t, we can’t have neither both hCP (T+)(t) �= 0 and
hEnv(T −)(t) �= 0 nor both hEnv(T+)(t) �= 0 and hCP (T −)(t) �= 0.

Proof. of Result 3
As the definitions of mP (T) and MP (T) are symetric, we only prove the

result for mP (T). Note that, by definition of T + and T−, for any instance
I ∈ ΦT , the associated instances I+ and I− are such that hI+(t) = max (0, hI(t))
and hI−(t) = min (0, hI(t)). Therefore hCP (T+)(t) = infI∈ ΦT (hI+(t)) and
hEnv(T −)(t) = infI∈ ΦT (hI−(t)).

We distinguish two cases: ∀ I ∈ ΦT , hI(t) > 0 (1) and its contrary
∃ I ∈ ΦT /hI(t) ≤ 0 (2). In the former case, ∀ I ∈ ΦT , hI(t) = hI+(t). Then
infI∈ ΦT (hI(t)) = infI∈ ΦT (hI+(t)) > 0. i.e., hmP (T)(t) = hCP (T+)(t) > 0.
Moreover, ∀ I ∈ ΦT , hI−(t) = 0 so hEnv(T −)(t) = 0. In the latter case
infI∈ ΦT (hI(t)) = infI∈ ΦT (hI−(t)) > 0. i.e., hmP (T)(t) = hEnv(T −)(t). More-
over, infI∈ ΦT (hI+(t)) = 0 i.e hCP (T+)(t) = 0.

We have proved that we can’t have both hCP (T+)(t) �= 0 and hEnv(T −)(t) �= 0
(by definition hCP (T+)(t) ≥ 0 and hEnv(T −)(t) ≤ 0) and that if hCP (T+)(t) > 0
then hmP (T)(t) = hCP (T+)(t) else hmP (T)(t) = hEnv(T −)(t). �

Complexity for computing the minimum and maximum profiles. From
Result 3 and as the complexity for computing a compulsory part or an envelope
is O(p log p) then the complexity for computing the minimum or the maximum
profile is also O(p log p).

Example 8. (continuation of Example 2) As T1 and T4 may be assigned to re-
sources 1 and 2 (aT1 = aT4 = {1, 2}), only envelopes are taken into account so

224 N. Beldiceanu and E. Poder

hmP (T1) = hEnv(T −
1) and hmP (T4) = hEnv(T4) (T−

4 = T4 as T4 is non–positive).
As T2 and T3 are assigned to resource 1 (aT2 = aT3 = {1}), compulsory parts
and envelopes are taken into account so hmP (T2) = hCP (T+

2) + hEnv(T −
2) and

hmP (T3) = hCP (T3) (T +
3 = T3 and T−

3 = ∅ as T3 is non–negative). Parts (A) to
(D) of Figure 4 respectively give mP (T1), mP (T2), mP (T3) and mP (T4). Fi-
nally, the following table summarises the different profiles (a trapezoid sub-task
is encoded by 〈start, startheight, end, endheight〉).

Ti; aTi
CP (T+

i) Env(T −
i) mP (Ti)

T1; aT1 = {1, 2} 〈2, 1, 3, 3/2〉 〈3,−1, 6, −1〉 Env(T −
1)

T2; aT2 = 1 〈2, 5/2, 3, 2〉, 〈6, 1, 7, 1〉 〈3,−2, 4,−2〉, 〈4,−2, 6,−1〉 CP (T+
2) ∪ Env(T −

2)
T3; aT3 = 1 〈3, 1, 4, 1〉,〈4, 1, 2, 6, 0〉 ∅ CP (T3)
T4; aT4 = {1, 2} ∅ 〈1,−1, 8, −1〉 Env(T4)

4 Computing All the Minimum and Maximum
Cumulated Resource’s Profiles Using a Sweep
Algorithm

This section first defines the notions of minimum and maximum cumulated re-
source’s profiles. Then it describes a polynomial (according to the number of
sub-tasks and of resources) sweep algorithm to compute, for each resource r its
minimum cumulated resource’s profile mcrP (r). These profile is computed from
all minimum task’s profiles mP (Ti) i = 1..n of the cumulatives pwl constraints.

4.1 Minimum and Maximum Cumulated Resource’s Profiles

We now show how to compute the minimum and maximum cumulated resource’s
profiles from the minimum and the maximum task’s profiles.

Definition 11. Let r be a resource and mcrP (r) (resp. McrP (r)) denotes the
minimum (resp. maximum) cumulated profile of resource r by all the tasks.
Then, for any t, hmcrP (r)(t) =

∑
Ti/r∈ aTi

hmP (T)(t) (resp. hMcrP (r)(t) =∑
Ti,r∈ aTi

hMP (T)(t)).

As the domains of the variables of all tasks are progressively reduced (until
becoming completely fixed), mcrP (r) and McrP (r) respectively increases and
decreases (until becoming a same single profile). From now on, as mcrP (r) and
McrP (r) have similar definitions, we focus on the computation of mcrP (r)

Example 9. (continuation of Example 8) Parts (E) and (F) of Figure 4 and the
following table provide mcrP (1) and mcrP (2) (hmcrP (1) =

∑4
i=1 hmP (Ti) and

hmcrP (2) = hmP (T1) + hmP (T4))

r Trapezoid sub-tasks of mrP (r)

1 〈1,−1, 2,−1〉, 〈2, 3/2, 3, 1〉, 〈3,−3, 4,−3〉, 〈4,−3, 6,−3〉, 〈6, 0, 7, 0〉, 〈7,−1, 8, −1〉
2 〈1,−1, 3,−1〉, 〈3,−2, 6,−2〉, 〈6,−1, 8, −1〉

A Continuous Multi-resources cumulative Constraint 225

+

+

hmP(T1)
= hEnv(T1

-)

-1

0 Time
62 3 4 5 7 81

-1
(A)

hmP(T4)
= hEnv(T4)

-1

0 Time62 3 4 5 7 81
(D)

+

=

-1 -1

0

+

hmP(T3)
= hCP(T3)

(C)

0

1

Time
62 3 4 5 7 81

=

hmP(T2)
= hCP(T2

+) + hEnv(T2
-)

-1

-2

0

1

2

Time62 3 4 5 81 7

2,5

-1

1
(B)

(F)
-1

-2

-3

0

hmcrP(2)= hmP(T1)+ hmP(T4)
62 3 4 5 7 81

-2
-1

Time

(D)
-1

0 Time62 3 4 5 7 81

hmP(T4)
= hEnv(T4)

-1 -1

(E)

-1

-2

0

1

2

Time

hmcrP(1)= hmP(T1)
+hmP(T2)

+hmP(T3)
+hmP(T4)

62 3 4 5 7 81
0

1,5

-3

-3

hmP(T1)
= hEnv(T1

-)

-1

0 Time
62 3 4 5 7 81
0

(A)
-1

e1= 1, Start, 3, -1, 0 , e2= 1, End, 6, 1, 0

e3= 2, Start, 1, -1, 0 , e4= 2, End, 8, 1, 0

e1 e2e3 e4

sum_sl2

sum_h2

1, -1, 3, -1 3, -2, 6, -2 6, -1, 8, -1

events

 0 0 0 0

1 3 6 8

-1 -2 -1 0

mcrP(2)
k

(G)

Fig. 4. Computation of mcrP (1) and mcrP (2)

4.2 Sweep Algorithm

To compute mcrP (r), for a given resource r, we have extended the sweep algo-
rithm presented in [1] in order to handle trapezoid sub-tasks. A general intro-
duction on sweep is given in [10] and an example of use of sweep, within the
context of disjunctive scheduling, is provided in [12].

The extended sweep algorithm moves a vertical line Δ from one event to
the next event - in our context, an event corresponds to a start or an end of a
trapezoid sub-task of mP (Ti) (i = 1..n; r ∈ aTi) - on the time axis and builds
mcrP (r) incrementally. It uses two data structures:

– The first one, called the sweep line status, contains for the resource r some
information related to the current position δ of the vertical line Δ: sum hr

and sum slr, respectively the height and the slope of mcrP (r) at position δ.
– The second data structure, called the event points series, contains the events

associated with the trapezoid sub-tasks used for building mcrP (r) (namely

226 N. Beldiceanu and E. Poder

the trapezoid sub-tasks of mP (Ti) such that Ti may be assigned to r (see
Result 3 and Definition 11). We encode these events by using the following
fields: 〈task, kind, date, height, slope〉, where:

• task indicates which task generates the event.
• kind expresses whether the event corresponds to the start (kind = Start)

or to the end (kind = End) of trapezoid that has generated this event.
• date specifies the location in time of the event i.e., contains, if kind =

Start, the start of the trapezoid otherwise its end.
• height gives the quantity to add to sum hr. It contains, if kind = Start,

the height of the trapezoid at its start otherwise it contains the opposite
of the height at its ends.

• slope gives the quantity to add to sum slr. It contains, if kind = Start,
the slope of the trapezoid otherwise it contains the opposite of its slope.

Each non–null sub-task mP (Ti)j 9 of mP (Ti) generates the pair of events:
〈i, Start, stmP (Ti)j , shmP (Ti)j , slmP (Ti)j 〉
〈i, End, etmP (Ti)j , −ehmP (Ti)j , −slmP (Ti)j 〉
where slmP (Ti)j =

ehmP (Ti)
j −shmP(Ti)

j

dmP(Ti)
j

.

All the events are initially computed and sorted (by Main Algorithm), in the
list Levents, in increasing lexicographically order according to the pair 〈kind, date〉
where kind = end is considered to be less than kind = start. Observe that one
event participates to the construction of all mcrP (r) such that r ∈ aTi .

sum hr and sum slr are initially set to 0 (line 1 of SA) and δ to the date of
the first event, associated to a task Ti such that r ∈ aTi , on the time axis (line
3 of SA). When the current position of Δ changes (line 5) from δk to δk+1, the
sweep algorithm:

– First computes the kth trapezoid sub-task mcrP (r)k of mcrP (r) (line 6).
– Then (line 7) verifies that mcrP (r)k do not exceed the resource capacity Cr,

otherwise the constraint has no solution.
– Then sum hr takes the value of the end height of the previous returned

trapezoid sub-task (mcrP (r)k) and δ is updated to δk+1 (line 9).

In any case all the contributions (heights and slopes) of sub-tasks that start or
end at δk+1 are taken into account in sum hr and sum slr (line 10).

Example 10. (continuation of Example 8) The sub-task 〈3, −1, 6, −1〉 of mP (T1)
generates the pair of events (e1 = 〈1, Start, 3, −1, 0〉, e2 = 〈1, End, 6, 1, 0〉) while
the trapezoid sub-task 〈1, −1, 8, −1〉 of mP (T4) generates the pair of events
(e3 = 〈4, Start, 1, −1, 0〉, e4 = 〈4, End, 8, 1, 0〉). The sorted relevant events of
Levents for computing mcrP (2) from mP (T1) and mP (T4) are 〈e3, e1, e2, e4〉.
When e1 becomes the current event then, the sweep line moves from position
1 to 3: the algorithm first computes the 1st trapezoid sub-task (1, −1, 3, −1) of

9 mP (Ti)
j = (stmP (Ti)j , shmP (Ti)j , etmP (Ti)j , ehmP (Ti)j) (start, startheight, end, end-

height) denote the jth trapezoid sub-task of the profiles mP (Ti).

A Continuous Multi-resources cumulative Constraint 227

mcrP (2) (see Figure 4 Parts (F) and (G)). Then the sweep line status is updated:
sum hr ← −1 and δ ← 3. Finally, the contribution of e1 is added to sum hr

which decreases from −1 to to −2 and to sum slr which doesn’t change.

Sweep Algorithm (SA) - Compute mcrP (r) for a given resource r
In: The list Levents of all sorted events 〈task, kind, date, height, slope〉 and a resource r.
Out: Fail if mcrP (r) exceed the resource capacity Cr; Otherwise Delay.
1: k ← 1; sum hr ← 0; sum slr ← 0;
2: Extract, if it exists, the first event e from Levents such that r ∈ aTe.task ;
3: δ ← e.date;
4: while e is defined do
5: | if e.date �= δ then /* Δ has just move: Compute the kth trapezoid of mcrP (r) */

6: | | st ← δ; sh ← sum hr; d ← e.date − δ; eh ← sum slr ∗ (e.date − δ) + sum hr;
7: | | if sh > Cr ∨ eh > Cr then return Fail; /* mcrP (r)k exceeds Cr */

8: | | mcrP (r)k ← (st, sh, e.date, eh); k ← k + 1;
9: | | sum hr ← eh; δ ← e.date; /* Update sum hr and δ */

10: | sum hr ← sum hr + e.height; sum slr ← sum slr + e.slope;
11: | Extract, if it exists, the next event e from Levents such that r ∈ aTe.task ;
12: return Delay;

Main Algorithm (MA) - Compute all mcrP
In: The tasks Ti (i = 1..n); Out: Fail if there is no solution otherwise return Delay.

1: Levents ← ∅;
2: for i = 1 to n do /* For all the tasks */

3: | Compute mP (Ti);
4: | for j = 1 to ‖mP (Ti)‖ do /* Generate mP-events */

5: | | if (shmP (Ti)j �= 0 ∨ ehmP (Ti)j �= 0) then /* i.e., not a null sub-task */

6: | | | sl = (ehmP (Ti)j − shmP (Ti)j)/dmP (Ti)j ;
7: | | | Add 〈i, Start, stmP (Ti)j , shmP (Ti)j , sl〉 to Levents;
8: | | | Add 〈i, End, etmP (Ti)j , −ehmP (Ti)j , −sl〉 to Levents;
9: Sort Levents in increasing lexicographically order according to 〈date, kind〉;

10: for r = 1 to q do if Sweep Algorithm(Levents, r) = Fail then return Fail;
11: return Delay;

The next result gives the complexities for computing all the minimum cumu-
lated resource’s profiles using a sweep algorithm.

Result 4. The complexities for computing all the minimum cumulated resource’s
profiles using a sweep algorithm is O(p · (log p + q)) where q is the number of
resources, p =

∑n
i=1(pi) is the total number of trapezoid sub-tasks of the n tasks.

Proof. of Result 4. The complexity for computing (see 3.4) all the mP (Ti) and
generating all the events is of O (

∑n
i=1(pi log pi)). The complexity for sorting the

at most 2 ·p+n events, using a sort algorithm with a complexity in O(p log p), is
O(p log p). Finally, for each resource r, the Sweep Algorithm computes mcrP (r)
in O(p) (in the worst case). Therefore, we obtain a complexity in the worst case
of O (

∑n
i=1(pi log pi) + p · log p +

∑q
i=1 p) i.e., O(p · (log p + q)). �

228 N. Beldiceanu and E. Poder

5 Conclusion

We have introduced a new task model that takes advantages of two models: in the
first one, several resources could be handled, but only a constant consumption
or production of resource could be expressed. In the second one, only positive
piecewise linear resource functions and a single resource were considered. For
this new task model, we came up with a polynomial algorithm to compute, for
each resource, its minimum and maximum cumulated resource’s profiles.

References

1. Beldiceanu, N. and Carlsson, M. (2002). A New Multi-Resource cumulatives Con-
straint with negative heights. In: P. Van Hentenryck, ed. 8th Int. Conf. on Princi-
ples and Practice of Constraint Programming - CP’2002, Ithaca, NY, USA, Sept.
8-13, 2002. Springer-Verlag: LNCS 2470, pp 63–79.

2. Caseau Y, Laburthe F (1996) Cumulative Scheduling with Task Intervals. In Pro-
ceedings of the Joint International Conference and Symposium on Logic Program-
ming, The MIT Press.

3. Herroelen, W., Demeulemeester, E. and De Reyck, B. (1998). A Classification
Scheme for Project Scheduling Problems. In: Weglarz J, ed., Project Schedul-
ing Recent Models, Algorithms and Applications. Kluwer Academic Publishers,
pp 1–26.

4. Klein R, Scholl A (1999) Computing lower bounds by destructive improvement:
An application to resource-constrained project scheduling, European Journal of
Operational Research, Vol 112, pp 322-346.

5. Lahrichi, A. (1982). Scheduling: the Notions of Hump, Compulsory Parts and their
Use in Cumulative Problems. C. R. Acad. Sci. Paris, t. 294, pp 209–211.

6. Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning
and scheduling: Existing approaches and new results. Artificial Intelligence, Vol
143, pp 151–188.

7. Maravelias, C.T. and I. E. Grossmann, (2004). A Hybrid MILP/CP Decomposi-
tion Approach for the Continuous Time Scheduling of Multipurpose Batch Plants,
Computers & chemical engineering, vol. 28 (10), pp. 1921–1949.

8. Muscettola, N. (2002). Computing the Envelope for Stepwise-Constant Resource
Allocations. In: P. Van Hentenryck, ed. 8th Int. Conf. on Principles and Practice of
Constraint Programming - CP’2002, Ithaca, NY, USA, Sept. 8-13, 2002. Springer-
Verlag: LNCS 2470, pp 139–153.

9. Poder, E., Beldiceanu, N., Sanlaville E. (2004). Computing a lower approxima-
tion of the compulsory part of a task with varying duration and varying resource
consumption. European Journal of Operational Research, Vol. 153, pp 239–254.

10. Preparata, F. P. and Ian Shamos, M. (1995). Computational Geometry, An intro-
duction. Texts and Monographs in Computer Science. Springer Verlag, New-York.

11. Sourd F and Rogerie J (2002) Continuous Filling and Emptying of Storage Systems
in Constraint-Based Scheduling. 8th International Workshop on Project Manage-
ment and Scheduling - MPS 2002, Valencia, Spain, April 3-5.

12. Wolf, A. (2003). Filtering while Sweeping over Task Intervals. In: F. Ross, ed.
9th Int. Conf. on Principles and Practice of Constraint Programming - CP 2003,
Kinsale, Ireland. Sept./Oct. 2003. Springer-Verlag: LNCS 2833, pp 739–753.

Replenishment Planning for Stochastic

Inventory Systems with Shortage Cost

Roberto Rossi1, S. Armagan Tarim2, Brahim Hnich3, and Steven Prestwich1

1 Cork Constraint Computation Centre, University College, Cork, Ireland
{r.rossi,s.prestwich}@4c.ucc.ie

2 Department of Management, Hacettepe University, Turkey
armagan.tarim@hacettepe.edu.tr

3 Faculty of Computer Science, Izmir University of Economics, Turkey
brahim.hnich@ieu.edu.tr

Abstract. One of the most important policies adopted in inventory
control is the (R,S) policy (also known as the “replenishment cycle”
policy). Under the non-stationary demand assumption the (R,S) policy
takes the form (Rn,Sn) where Rn denotes the length of the nth replen-
ishment cycle, and Sn the corresponding order-up-to-level. Such a policy
provides an effective means of damping planning instability and coping
with demand uncertainty. In this paper we develop a CP approach able
to compute optimal (Rn,Sn) policy parameters under stochastic demand,
ordering, holding and shortage costs. The convexity of the cost-function
is exploited during the search to compute bounds. We use the optimal
solutions to analyze the quality of the solutions provided by an approx-
imate MIP approach that exploits a piecewise linear approximation for
the cost function.

1 Introduction

Much of the inventory control literature concerns the computation of optimal re-
plenishment policies under demand uncertainty. One of the most important poli-
cies adopted is the (R,S) policy (also known as the replenishment cycle policy).
In this policy a replenishment is placed every R periods to raise the inventory
position to the order-up-to-level S. This provides an effective means of damping
planning instability (deviations in planned orders, also known as nervousness)
and coping with demand uncertainty. As pointed out by Silver et al. ([8], pp.
236–237), (R,S) is particularly appealing when items are ordered from the same
supplier or require resource sharing. In these cases all items in a coordinated
group can be given the same replenishment period. Periodic review also allows
a reasonable prediction of the level of the workload on the staff involved, and
is particularly suitable for advanced planning environments. For these reasons
(R,S) is a popular inventory policy.

An important class of stochastic production/inventory control problems as-
sumes a non-stationary demand process. Under this assumption the (R,S) policy
takes the non-stationary form (Rn,Sn) where Rn denotes the length of the nth

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 229–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

230 R. Rossi et al.

replenishment cycle and Sn the corresponding order-up-to-level. To compute the
near optimal policy parameters for (Rn,Sn), Tarim and Kingsman [4] propose a
mixed integer programming (MIP) formulation using a piecewise linear approx-
imation to a complex cost function.

This paper focuses on the work of Tarim and Kingsman, in which a finite-
horizon, single-installation, single-item (Rn,Sn) policy is addressed. They assume
a fixed procurement cost each time a replenishment order is placed, whatever the
size of the order, and a linear holding cost on any unit carried over in inventory
from one period to the next. Instead of employing a service level constraint —
the probability that at the end of every time period the net inventory will not
be negative is at least a certain value (see Tarim and Kingsman [3] for (Rn,Sn)
under a service level constraint) — their model employs a penalty cost scheme.
They propose a certainty-equivalent formulation of the above problem in the
form of a MIP model. So far no CP approach has been proposed for (Rn,Sn)
under a penalty cost. In fact, as shown in [4], the cost structure is complex in
this case and it differs significantly from the one under a service level constraint.
In [2] the authors proposed a CP model under a service level constraint. In
this paper it was shown that not only CP is able to provide a more compact
formulation than the MIP one, but that it is also able to perform faster and
to take advantage of dedicated pre-processing techniques that reduce the size
of decision variable domains. Moreover dedicated cost-based filtering techniques
were proposed in [1] for the same model, these techniques are able to improve
performances of several orders of magnitude.

In this paper, we give an exact formulation of the (Rn,Sn) inventory control
problem via constraint programming, instead of employing a piecewise linear
approximation to the total expected cost function. This exact CP formulation
provides an optimal solution to (R,S) policy. Our contribution is two-fold: we
can now obtain provably optimal solutions, and we can gauge the accuracy of
the piecewise linear approximation proposed by Tarim and Kingsman.

2 Problem Definition and (Rn, Sn) Policy

The demand dt in period t is considered to be a normally distributed random
variable with known probability density function (PDF) gt(dt), and is assumed to
occur instantaneously at the beginning of each period. The mean rate of demand
may vary from period to period. Demands in different time periods are assumed
to be independent. A fixed holding cost h is incurred on any unit carried over
in inventory from one period to the next. Demands occurring when the system
is out of stock are assumed to be back-ordered and satisfied as soon as the next
replenishment order arrives. A fixed shortage cost s is incurred for each unit of
demand that is back-ordered. A fixed procurement (ordering or set-up) cost a
is incurred each time a replenishment order is placed, whatever the size of the
order. In addition to the fixed ordering cost, a proportional direct item cost v
is incurred. For convenience, and without loss of generality, the initial inventory
level is set to zero and the delivery lead-time is not incorporated. It is assumed

Replenishment Planning for Stochastic Inventory Systems 231

that negative orders are not allowed, so that if the actual stock exceeds the
order-up-to-level for that review, this excess stock is carried forward and does
not return to the supply source. However, such occurrences are regarded as rare
events and accordingly the cost of carrying the excess stock is ignored. The above
assumptions hold for the rest of this paper.

The general multi-period production/inventory problem with stochastic de-
mands can be formulated as finding the timing of the stock reviews and the size
of non-negative replenishment orders, Xt in period t, minimizing the expected
total cost over a finite planning horizon of N periods:

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(
aδt + vXt + hI+

t + sI−t
)
g1(d1) . . . gN (dN)d(d1) . . . d(dN)

(1)

subject to

Xt > 0 ⇒ δt = 1 (2)

It =
t∑

i=1

(Xi − di) (3)

I+
t = max(0, It) (4)

I−t = − min(0, It) (5)

Xt, I
+
t , I−t ∈ Z

+ ∪ {0}, It ∈ Z, δt ∈ {0, 1} (6)

for t = 1 . . .N , where

dt : the demand in period t, a normal random variable with PDF gt(dt),
a : the fixed ordering cost,
v : the proportional direct item cost,
h : the proportional stock holding cost,
s : the proportional shortage cost,
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,
It : the inventory level at the end of period t, −∞ < It < +∞, I0 = 0
I+
t : the excess inventory at the end of period t carried over to the next period,

0 ≤ I+
t ,

I−t : the shortages at the end of period t, or magnitude of negative inventory
0 ≤ I−t ,

Xt : the replenishment order placed and received in period t, Xt ≥ 0.

The proposed non-stationary (R,S) policy consists of a series of review times and
associated order-up-to-levels. Consider a review schedule which has m reviews
over the N period planning horizon with orders arriving at {T1, T2, . . . , Tm},
Tj > Tj−1. For convenience T1 = 1 is defined as the start of the planning
horizon and Tm+1 = N + 1 the period immediately after the end of the horizon.

232 R. Rossi et al.

In [3], the decision variable XTi is expressed in terms of a new variable St ∈ Z,
where St may be interpreted as the opening stock level for period t, if there is
no replenishment in this period (i.e. t �= Ti and Xt = 0) and the order-up-to-
level for the i-th review period Ti if there is a replenishment (i.e. t = Ti and
Xt > 0). According to this transformation the expected cost function, Eq. (1),
is written as the summation of m intervals, Ti to Ti+1 for i = 1, . . . , m, defining
Dt1,t2 =

∑t2
j=t1

dj :

min E{TC} =
m∑

i=1

⎛

⎝aδTi +
Ti+1−1∑

t=Ti

E{CTi,t}

⎞

⎠+

vIN + v

∫

D1,N

D1,N × g(D1,N)d(D1,N),

(7)

The term v
∫

D1,N
D1,N×g(D1,N)d(D1,N) is constant and can therefore be ignored

in the optimization model. E{CTi,t} of Eq. (7) is defined as:
∫ STi

−∞
h (STi − DTi,t) g(DTi,t)d(DTi,t) −

∫ ∞

STi

s (STi − DTi,t) g(DTi,t)d(DTi,t).

(8)

As stated in [4], E{CTi,t} is the expected cost function of a single-period in-
ventory problem where the single-period demand is DTi,t. Since STi may be
interpreted as the order-up-to-level for the i-th review period Ti and STi −DTi,t

is the end of period inventory for the “single-period” with demand DTi,t, the
expected total subcosts E{CTi,t} are the sums of single-period inventory costs
where the demands are the cumulative demands over increasing periods. By
dropping the Ti and t subscripts in Eq. (8) we obtain the following well-known
expression for the expected total cost of a single-period newsvendor problem:

E{TC} = h

∫ S

−∞
(S − D)g(D)d(D) − s

∫ ∞

S

(S − D)g(D)d(D) (9)

where we consider two cost components: holding cost on the positive end of
period inventory and shortage cost for any back-ordered demand. Let G(·) be the
cumulative distribution function of the demand in our single-period newsvendor
problem. A known result in inventory theory (see [17]) is convexity of Eq. (9). The
so-called Critical Ratio, s

s+h , can be seen as the service level β (i.e. probability
that at the end of the period the inventory level is non-negative) provided when
we fix the order-up-to-level S to the optimal value S∗ that minimizes expected
holding and shortage costs (Eq. (9)). By assuming G(·) to be strictly increasing,
we can compute the optimal order-up-to-level as S∗ = G−1

(
s

s+h

)
.

2.1 Stochastic Cost Component in Single-Period Newsvendor

We now aim to characterize the cost of the policy that orders S∗ units to
meet the demand in our single-period newsvendor problem. Since the demand

Replenishment Planning for Stochastic Inventory Systems 233

D is assumed to be normal with mean μ and standard deviation σ, then we
can write D = μ + σZ, where Z is a standard normal random variable. Let
Φ(z) = Pr(Z ≤ z) be the cumulative distribution function of the standard
normal random variable. Since Φ(·) is strictly increasing, Φ−1(·) is uniquely de-
fined. Let zβ = Φ−1(β), since Pr(D ≤ μ + zβσ) = Φ(zβ) = β, it follows that
S∗ = μ + zβσ. The quantity zβ is known as the safety factor and S∗ − μ = zβσ
is known as the safety stock. It can be shown [17] that
∫ ∞

S∗
(S∗ − D)g(D)d(D) = E{D − S∗}+ = σE{Z − zβ}+ = σ[φ(zβ) − (1 − β)zβ]

(10)
where φ(·) is the PDF of the standard normal random variable. Let E{S∗ −
D}+ =

∫ S

−∞(S − D)g(D)d(D), it follows

E{TC(S∗)} = h · E{S∗ − D}+ + s · E{D − S∗}+ =

h · (S∗ − μ) + (h + s)E{D − S∗}+ =

hzβσ + (h + s)σE{Z − zβ}+ =
hzβσ + (h + s)σ[φ(zβ) − (1 − β)zβ] =

(h + s)σφ(zβ)

(11)

The last expression (h + s)σφ(zβ) holds only for the optimal order-up-to-level

S∗ that provides the service level β =
(

s
s+h

)
computed from the critical ratio

(CR). Instead, expression

hzασ + (h + s)σ[φ(zα) − (1 − α)zα] (12)

can be used to compute the expected total cost for any given level S such that
α = Φ

(
S−μ

σ

)
. In Fig. 1 we plot this cost for a particular instance as a function

of the opening inventory level S.

Fig. 1. Single-period holding and shortage cost as a function of the opening inventory
level S. The demand is normally distributed with mean 200 and standard deviation 20.
Holding cost is 1, shortage cost is 10.

234 R. Rossi et al.

2.2 Stochastic Cost Component in Multiple-Period Newsvendor

The considerations in the former sections refer to a single-period problem, but
they can be easily extended to a replenishment cycle R(i, j) that covers the
period span i, . . . , j. The demand in each period is normally distributed with
PDF gi(dj), . . . , gj(dj). The cost for the multiple periods’ replenishment cycle,
when ordering costs are neglected, can be expressed as

E{TC} =
j∑

k=i

(
h

∫ S

−∞
(S − di,k)gi,k(di,k)d(di,k) − s

∫ ∞

S

(S − di,k)gi,k(di,k)d(di,k)

)
(13)

Since demands are independent and normally distributed in each period, the
term gi,j(di,j) (that is the p.d.f. for the overall demand over the period span
{i, . . . , j}) can be easily computed (see [12]) once the demand in each period
di, . . . , dj are known. It is easy to apply the same rule as before and compute
the second derivative of this expression:

d2

dS2 E{TC} =
j∑

k=i

(h · gi,k(S) + s · gi,k(S)) (14)

which is again a positive function of S, since gi,k(S) are PDFs and both hold-
ing and shortage cost are assumed to be positive. The expected cost of a single
replenishment cycle therefore remains convex in S regardless of the periods cov-
ered. Unfortunately it is not possible to compute the CR as before, using a
simple algebraic expression to obtain the optimal S∗ which minimizes the ex-
pected cost. But since the cost function is convex, it is still possible to compute
S∗ efficiently. Eq. (12) can be extended in the following way to compute the cost
for the replenishment cycle R(i, j) as a function of the opening inventory level
S:

j∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]

)
(15)

where Gi,k(S) = α(i, k) and zα(i,k) = Φ−1(α(i, k)). Therefore we have j − i +
1 cost components: the holding and shortage cost at the end of period i, i +
1, . . . , j. In Fig. 2 we plot this cost for a particular instance as a function of the
opening inventory level S. For each possible replenishment cycle we can efficiently
compute the optimal S∗ that minimizes such a cost function, using gradient
based methods for convex optimization such as Newton’s method. Notice that
the complete expression for the cost of replenishment cycles that start in period
i ∈ {1, ..., N} and end in period N is

N∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]

)
+

v

(
S −

N∑

k=i

dk

) (16)

Replenishment Planning for Stochastic Inventory Systems 235

Fig. 2. Three periods holding and shortage cost as a function of the opening inventory
level S. The demand is normally distributed in each period with mean respectively 150,
100, 200, the coefficient of variation is 0.1. Holding cost is 1, shortage cost is 10.

In fact for this set of replenishment cycles we must also consider the unit cost
component. Once S∗ is known, by subtracting the expected demand over the
replenishment cycle we obtain the optimal expected buffer stock level b(i, j)
required for such a replenishment cycle in order to minimize holding and shortage
cost. Notice that every other choice for buffer stock level will produce a higher
expected total cost for R(i, j).

An upper bound for the value of the opening inventory level in each period
t ∈ {1, ..., N} can be computed by considering the buffer stock b(1, N) required
to optimize the convex cost of a single replenishment cycle R(1, N) that covers
the whole planning horizon. Then for each period t ∈ {1, ..., N}, max(St) =∑N

t d̃t+b(1, N). A lower bound for the value of the expected closing inventory
level in each period t ∈ {1, ..., N}, i.e. opening inventory level minus expected de-
mand, can be computed by considering every possible buffer stock b(i, j) required
to optimize the convex cost of a single replenishment cycle R(i, j), independently
of the other cycles that are planned. The lower bound will be the minimum value
among all these possible buffer values for j ∈ {1, ..., N} and i ∈ {1, ..., j}.

3 Deterministic Equivalent CP Formulation

Building on the considerations above it is easy to construct a deterministic equiv-
alent CP formulation for the non-stationary (Rn, Sn) policy under stochastic
demand, ordering cost, holding and shortage cost. (For a detailed discussion on
deterministic equivalent modeling in stochastic programming see [14]).

In order to correctly compute the expected total cost for a replenishment
cycle R(i, j) with opening inventory level Si, we must build a special-purpose
constraint objConstraint(·) that dynamically computes such a cost by means of
an extended version of Eq. (15)

C(Si, i, j) = a +
j∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]

)

(17)

236 R. Rossi et al.

that considers the ordering cost. Then the expected total cost for a certain re-
plenishment plan will be computed as the sum of all the expected total costs
for replenishment cycles in the solution, plus the respective ordering costs.
objConstraint(·) also computes the optimal expected buffer stock level b(i, j) for
every replenishment cycle R(i, j) identified by a partial assignment for δk∈{1,...,N}
variables. A deterministic equivalent CP formulation is

min E{TC} = C (18)

subject to

objConstraint
(
C, Ĩ1, . . . , ĨN , δ1, . . . , δN , d1, . . . , dN , a, h, s

)
(19)

and for t = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (20)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (21)

Ĩt ∈ Z, δt ∈ {0, 1} (22)

Each decision variable Ĩt represents the expected closing inventory level at the
end of period t; bounds for the domains of these variables can be computed
as explained above. Each d̃t represents the expected value of the demand in a
given period t according to its PDF gt(dt). The binary decision variables δt state
whether a replenishment is fixed for period t (δt = 1) or not (δt = 0).

Eq. (20) enforces a no-buy-back condition, which means that received goods
cannot be returned to the supplier. As a consequence of this the expected in-
ventory level at the end of period t must be no less than the expected inventory
level at the end of period t − 1 minus the expected demand in period t. Eq. (21)
expresses the replenishment condition. We have a replenishment if the expected
inventory level at the end of period t is greater than the expected inventory level
at the end of period t − 1 minus the expected demand in period t. This means
that we received some extra goods as a consequence of an order.

The objective function (18) minimizes the expected total cost over the given
planning horizon. objConstraint(·) dynamically computes buffer stocks and it
assigns to C the expected total cost related to a given assignment for replen-
ishment decisions, depending on the demand distribution in each period and
on the given combination for problem parameters a, h, s. In order to propagate
this constraint we wait for a partial assignment involving δt, t = 1, . . . , N vari-
ables. In particular we look for an assignment where there exists some i s.t.
δi = 1, some j > i s.t. δj+1 = 1 and for every k, i < k ≤ j, δk = 0. This will
uniquely identify a replenishment cycle R(i, j) (Fig. 3). There may be more re-
plenishment cycles associated to a partial assignment. If we consider each R(i, j)
identified by the current assignment, it is easy to minimize the convex cost func-
tion already discussed, and to find the optimal expected buffer stock b(i, j) for
this particular replenishment cycle independently on the others. By doing this
for every replenishment cycle identified, two possible situations may arise: the

Replenishment Planning for Stochastic Inventory Systems 237

Fig. 3. A replenishment cycle R(i, j) is identified by the current partial assignment for
δi variables

buffer stock configuration obtained satisfies every inventory conservation con-
straint (Eq. (20)), or for some couple of subsequent replenishment cycles this
constraint is violated (Fig. 4). Therefore we observe an expected negative order
quantity. If the latter situation arises we can adopt a fast convex optimization

Fig. 4. The expected total cost of both replenishment cycles is minimized, but the
inventory conservation constraint is violated between R(i, k) and R(k + 1, j)

procedure to compute a feasible buffer stock configuration with minimum cost.
The key idea is to identify two possible limit situations: we increase the opening
inventory level of the second cycle, thus incurring a higher overall cost for it,
to preserve optimality of the first cycle (Fig. 5 - a). Or we decrease the buffer
stock of the first replenishment cycle, thus incurring a higher overall cost for it,
to preserve optimality of the second cycle cost (Fig. 5 - b). A key observation
is that, when negative order quantity scenarios arise, at optimality the closing
inventory levels of the first and the second cycle lie in the interval delimited by
the two situations described. This directly follows from the convexity of both
the cost functions. Moreover the closing inventory level of the first cycle must

Fig. 5. Feasible limit situations when negative order quantity scenarios arise

238 R. Rossi et al.

be equal to the opening inventory level of the second cycle. In fact, if this does
not hold, then either the first cycle has a closing inventory level higher than
the opening inventory level of the second cycle and the solution is not feasi-
ble (Fig. 6 - a), or the first cycle has a closing inventory level smaller than
the opening inventory level of the second cycle. In the latter case we can obvi-
ously decrease the overall cost by choosing a smaller opening inventory level for
the second cycle (Fig. 6 - b). The algorithm for computing optimal buffer stock

Fig. 6. Infeasible (a) and suboptimal (b) plans realized when the opening inventory
level of the second cycle doesn’t equate the closing inventory level of the first cycle

configurations in presence of negative order quantity scenarios simply exploits the
linear dependency between opening inventory level of the second cycle and closing
inventory level of the first cycle. Due to this dependency the overall cost is still con-
vex in b(i, k) (or equivalently in b(k+1, j), since they are linearly dependent) and
we can apply any convex optimization technique to find the optimal buffer stock
configuration. Notice that this reasoning still holds in a recursive process. There-
fore we can optimize buffer stock for two subsequent replenishment cycles, then
we can treat these as a new single replenishment cycle, since their buffer stocks
are linearly dependent, and repeat the process in order to consider the next re-
plenishment cycle if a negative order quantity scenario arises.

Once buffer stocks are known we can apply Eq. (17) to the opening inventory
level Si = d̃i + . . . + d̃j + b(i, j) and compute the cost C(Si, i, j) associated to a
given replenishment cycle. Since the cost function in Eq. (17) is convex and we
handle negative order quantity scenarios, a lower bound for the expected total
cost associated to the current partial assignment for δt, t = 1, . . . , N variables is
now given by the sum of all the cost components C(Si, i, j), for each replenish-
ment cycle R(i, j) identified by the assignment. Furthermore this bound is tight
if all the δt variables have been assigned. objConstraint(·) exploits this prop-
erty in order to incrementally compute a lower bound for the cost of the current
partial assignment for δt variables. When every δt variable is ground, since such
a lower bound becomes tight, buffer stocks computed for each replenishment
cycle identified can be assigned to the respective It variables. Finally, in order
to consider the unit variable cost v we must add the term v · IN to the cycle cost
C(Si, i, N) for i ∈ {1, ..., N}. Therefore the complete expression for the cost of
replenishment cycles that start in period i ∈ {1, ..., N} and end in period N is:

Replenishment Planning for Stochastic Inventory Systems 239

Table 1. Expected demand values

Period 1 2 3 4 5 6 7 8
d̃t 200 100 70 200 300 120 50 100

C(Si, i, N) = a +
N∑

k=i

(
hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]

)

+v

(
Si −

N∑

k=i

dk

)

(23)

4 Comparison of the CP and MIP Approaches

In [4] Tarim and Kingsman proposed a piecewise linear approximation of the
cost function for the single-period newsvendor type model under holding and
shortage costs, which we analyzed above. Thus they were able to build a MIP
model approximating an optimal solution for the multi-period stochastic lot-
sizing under fixed ordering, holding and shortage costs. They gave a few examples
to show the effect of higher noise levels (uncertainty in the demand forecasts)
on the order schedule. Using the same examples we shall compare the policies
obtained using our exact CP approach with their approximation. Depending on
the number of segments used in the piecewise approximation, the quality of the
solutions obtained can be improved. We shall consider approximations with two
and seven segments. The forecast of demand in each period are given in Table
1. We assume that the demand in each period is normally distributed about
the forecast value with the same coefficient of variation τ . Thus the standard
deviation of demand in period t is σt = τ · d̃t. In all cases, initial inventory levels,
delivery lead-times and salvage values are set to zero.

In Fig. 7–11 optimal replenishment policies obtained with our CP approach
are compared for four different instances, with respect to τ , v, a and s, with
the policies provided by the 2-segment (PW-2) and 7-segment (PW-7) approxi-
mations. For each instance we compare the expected total cost provided by the
exact method with the expected total cost provided by the policies found using
approximate MIP models. Since the cost provided by PW-2 and PW-7 is an
approximation, it often differs significantly from the real expected total cost re-
lated to policy parameters found by these models. It is therefore not meaningful
to compare the cost provided by the MIP model with that of the optimal policy
obtained with our CP model. To obtain a meaningful comparison we computed
the real expected total cost by applying the exact cost function (Eqs. 17, 23)
discussed above to the (Rn,Sn) policy parameters obtained through PW-2 and
PW-7. It is then possible to assess the accuracy of approximations in [4]. Fig.
7 shows the optimal replenishment policy for the deterministic case (τ = 0.0).
The direct item cost (v) is taken as zero. Four replenishment cycles are planned.

240 R. Rossi et al.

Fig. 7. h = 1, a = 250, s = 10, v = 0, τ = 0.0

Fig. 8. h = 1, a = 250, s = 10, v = 0, τ = 0.1

The (Rn,Sn) policy parameters are R = [3, 1, 3, 1] and S = [370, 200, 470, 100].
The total cost for this policy is 1460. Fig. 8 shows an instance where we con-
sider low levels of forecast uncertainty (τ = 0.1). In this case both PW-2 and
PW-7 perform well compared to our exact CP solutions. Since forecast uncer-
tainty must be considered, all the models introduce buffer stocks. The optimal
(Rn,Sn) policy parameters found by our CP approach are R = [3, 1, 2, 2] and
S = [384, 227, 449, 160]. The PW-2 solution is 1.75% more costly than the exact
solution, while the PW-7 solution is slightly more costly than the exact solution.

Fig. 9 shows that as the level of forecast uncertainty increases (τ = 0.2),
the quality of the PW-2 solution deteriorates, in fact it is now 3.62% more
costly than the exact solution. The optimal (Rn,Sn) policy parameters found
by our CP approach are R = [3, 1, 2, 2] and S = [401, 253, 479, 170]. In contrast
the PW-7 solution is still only slightly more costly than the exact solution. As
noted in [4] the quality of the approximation decreases for high ratios s/h. In
Fig. 10 we consider s/h = 50 and a different demand pattern. The forecast of
demand in each period are given in Table 2. Now the PW-2 solution is 6.66%
more costly than the exact approach, while the PW-7 solution is 1.03% more
costly. The optimal (Rn,Sn) policy parameters found by our CP approach are
R = [3, 1, 2, 1, 1] and S = [483, 324, 592, 324, 486]. In Fig. 11 we consider the same
instance but a direct item cost is now incurred (v = 15). The buffer stock held
in the last replenishment cycle is affected by this parameter, and is decreased

Replenishment Planning for Stochastic Inventory Systems 241

Table 2. Expected demand values

Period 1 2 3 4 5 6 7 8
dt 200 100 70 200 300 120 200 300

Fig. 9. h = 1, a = 250, s = 10, v = 0, τ = 0.2

Fig. 10. h = 1, a = 350, s = 50, v = 0, τ = 0.3

Fig. 11. h = 1, a = 350, s = 50, v = 15, τ = 0.3

from 186 to 63. The PW-7 policy is now 0.84% more costly than the exact
one. For these instances seven segments usually provides a solution with a cost
reasonably close to optimal. In terms of running times, for all these instances
both the MIP approximations and the CP model perform very quickly. In our
experiments we used ILOG OPL Studio 3.7 to solve the MIP models of [4],
and Choco [16] (an open source solver written in Java) to implement our CP
model. All experiments were performed on an Intel Centrino 1.5 GHz with 500Mb

242 R. Rossi et al.

RAM. Since the planning horizon is short (8 periods), we were able to solve any
instance in less than a second. As the planning horizon length increases the pure
CP model becomes slower than the MIP one. This is due both to the size of
decision variable domains and to the lack of good bounds in the search. We do
not discuss efficiency issues in this paper, but we emphasise that a significant
reduction in decision variable domain sizes can be achieved in a way similar to the
one discussed in [2]. Furthermore it is possible to incorporate in our CP model
dedicated cost-based filtering methods [15] based on a dynamic programming
relaxation [5] that is able to generate good bounds during the search. Such a
technique has been already employed under a service level constraint [1] and
preliminary results in this direction under a penalty cost suggest that our exact
CP model, when enhanced with these dedicated filtering techniques, is able to
produce an optimal solution for instances up to 50 periods and more in a few
seconds.

5 Conclusions

We presented a CP approach that finds optimal (Rn,Sn) policies under non-
stationary demands. Using our approach it is now possible to evaluate the quality
of a previously published MIP-based approximation method, which is typically
faster than the pure CP approach. Using a set of problem instances we showed
that a piecewise approximation with seven segments usually provides good qual-
ity solutions, while using only two segments can yield solutions that differ signifi-
cantly from the optimal. In future work we will aim to develop domain reduction
techniques and cost-based filtering methods to enhance the performance of our
exact CP approach.

Acknowledgements. this work was supported by Science Foundation Ireland
under Grant No. 03/CE3/I405 as part of the Centre for Telecommunications
Value-Chain-Driven Research (CTVR) and Grant No. 00/PI.1/C075.

References

1. S. A. Tarim, B. Hnich, R. Rossi, S. Prestwich. Cost-Based Filtering for Stochastic
Inventory Control. Lecture Notes in Computer Science, Springer-Verlag, 2007, to
appear.

2. S. A. Tarim, B. Smith. Constraint Programming for Computing Non-Stationary
(R,S) Inventory Policies. European Journal of Operational Research. to appear.

3. S. A. Tarim, B. G. Kingsman. The Stochastic Dynamic Production/Inventory Lot-
Sizing Problem With Service-Level Constraints. International Journal of Produc-
tion Economics 88:105–119, 2004.

4. S. A. Tarim, B. G. Kingsman. Modelling and Computing (Rn,Sn) Policies for
Inventory Systems with Non-Stationary Stochastic Demand. European Journal of
Operational Research 174:581–599, 2006.

5. S. A. Tarim. Dynamic Lotsizing Models for Stochastic Demand in Single and Multi-
Echelon Inventory Systems. PhD Thesis, Lancaster University, 1996.

Replenishment Planning for Stochastic Inventory Systems 243

6. J. H. Bookbinder, J. Y. Tan. Strategies for the Probabilistic Lot-Sizing Problem
With Service-Level Constraints. Management Science 34:1096–1108, 1988.

7. H. M. Wagner, T. M. Whitin. Dynamic Version of the Economic Lot Size Model.
Management Science 5:89–96, 1958.

8. E. A. Silver, D. F. Pyke, R. Peterson. Inventory Management and Production
Planning and Scheduling. John Wiley and Sons, New York, 1998.

9. E. L. Porteus. Foundations of Stochastic Inventory Theory. Stanford University
Press, Stanford, CA, 2002.

10. K. Apt. Principles of Constraint Programming. Cambridge University Press, Cam-
bridge, UK, 2003.

11. A. Charnes, W. W. Cooper. Chance-Constrainted Programming. Management Sci-
ence 6(1):73–79, 1959.

12. L. Fortuin. Five Popular Probability Density Functions: a Comparison in the Field
of Stock-Control Models. Journal of the Operational Research Society 31(10):937–
942, 1980.

13. I. J. Lustig, J.-F. Puget. Program Does Not Equal Program: Constraint Program-
ming and its Relationship to Mathematical Programming. Interfaces 31:29–53,
2001.

14. J. R. Birge, F. Louveaux. Introduction to Stochastic Programming. Springer Ver-
lag, New York , 1997.

15. F. Focacci, A. Lodi, M. Milano. Cost-Based Domain Filtering. Fifth International
Conference on the Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science 1713, Springer Verlag, 1999, pp. 189–203.

16. F. Laburthe and the OCRE project team. Choco: Implementing a CP Kernel.
Bouygues e-Lab, France.

17. G. Hadley, T. M. Whitin. Analysis of Inventory Systems. Prentice Hall, 1964.

Preprocessing Expression-Based Constraint

Satisfaction Problems for Stochastic Local
Search

Sivan Sabato and Yehuda Naveh

IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel
{sivans,naveh}@il.ibm.com

Abstract. This work presents methods for processing a constraint sat-
isfaction problem (CSP) formulated by an expression-based language,
before the CSP is presented to a stochastic local search solver. The ar-
chitecture we use to implement the methods allows the extension of the
expression language by user-defined operators, while still benefiting from
the processing methods. Results from various domains, including indus-
trial processor verification problems, show the strength of the methods.
As one of our test cases, we introduce the concept of random-expression
CSPs as a new form of random CSPs. We believe this form emulates
many real-world CSPs more closely than other forms of random CSPs.
We also observe a satisfiability phase transition in this type of problem
ensemble.

1 Introduction

The most important aspect of constraint programming (CP) over other variable-
assignment paradigms (e.g., Satisfiability or integer linear programming) is its
ease of modeling. CP allows users to describe the problem at hand in a way that
is close to the problem’s domain, as opposed to a formal language derived from
the solution scheme in other methods. One generic way to allow this natural
modeling is to define an expression-based language with simple operators that
have a wide range of semantics. Operators may be arithmetic (e.g., +,-), logi-
cal (e.g., and, or), set operators (e.g., member-of), or problem-domain specific.
They may be binary (e.g., equal-to, less-than) or global (e.g., all-different,
equal-sum). One example of a generic expression language is OPL [1], supported
by ILOG.

Some classes of constraint satisfaction problems (CSPs) are recognized as not
easily solved by systematic methods, and stochastic local search (SLS) methods
need to be called upon [2]. In this paper we show that the ease with which
SLS methods can solve a CSP model written in an expression language highly
depends on the way the model is processed and analyzed before it is presented
to the SLS solver. We present generic processing algorithms that transform the
input CSP model into an SLS model that is easier to solve in many cases. As
in [3], the processing algorithms use interfaces (or abstract methods) to support

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 244–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Preprocessing Expression-Based Constraint Satisfaction Problems 245

the addition of any user-defined operator. However, while previous works focus
on abstracting methods related to the search phase [4,3], we are interested in
processing the CSP model itself, before entering the search phase.

One of the main tasks in developing an SLS solver involves enhancing its abil-
ity to escape local minima in the topography defined by the cost function of all
complete assignments. Therefore, SLS solvers (e.g., Walksat [5] or COMET [3]),
can incorporate many types of meta-heuristics, such as simulated annealing [6],
min-conflicts [7], Tabu Search [8], or variable-neighborhood search [9], designed
to escape local minima. Still, for all these methods, it is highly beneficial to have
the CSP mapped into a topography with fewer local minima and plateaus.

The abstract interfaces and concrete methods we present aim to achieve this
goal in a generic way. More specifically, real world CSPs are sometimes composed
of differently structured constraints, written independently from each other. The
resulting problem of ‘bad models’ is known [10], and processing algorithms aimed
at improving the models exist for non-SLS search schemes (e.g., in Satisfiability
[10] and arc-consistency methods [11]). Here we extend these methods to SLS.

This paper is outlined as follows. Section 2 defines an expression language
we use to model the input CSP. Section 3 describes the architecture of the SLS
solver and its use of operators in the expression language. Section 4, which forms
the main part of the paper, refines this architecture to support the processing
methods and presents the processing algorithms. Experimental results are shown
in Section 5, where the concept of random expression CSP is also presented.

2 Expression-Based CSPs

The formal grammar of the example language we use as input throughout the
paper is listed in Figure 1. This language captures many of the basic con-
structs expected from a general-purpose expression-based CSP language. While
additional generic or domain-specific operators may be added, this language
is powerful enough to easily model many of the problems in CSPLib
(http://www.csplib.org/), as well as a large number of real world problems.

In Figure 1, words in upper case stand for non-terminals and underlined words
are reserved. The entire CSP is generated from the non-terminal P. A CSP
description is comprised of a list of declarations of integer variables and their
domains, and a list of constraints created from logical, arithmetic, and other
operators. Domains of variables are defined as ranges of integers. An example for
the use of the input language is given in Figure 2. We will sometimes formulate
CSP descriptions more loosely for ease of presentation, when it is obvious how
one would translate them to a valid description using our grammar.

3 System Architecture

3.1 Internal CSP Representation

An expression-based CSP is represented by a rooted tree as exemplified in
Figure 3. The leaves of the tree are mapped to variables or constants and the

246 S. Sabato and Y. Naveh

P −→ VARDECL constraints CONSDECL
VARDECL −→ VD ; VARDECL | ε
CONSDECL −→ CONS; CONSDECL | ε
VD −→ VAR RANGES
RANGES −→ RANGES, [NUM, NUM]
RANGES −→ [NUM, NUM]
CONS −→ (CONS) OP (CONS)
CONS −→ not (CONS)
CONS −→ ((EXP) COMPARE (EXP))
CONS −→ all-diff(VARLIST)
CONS −→ some-equal(VARLIST)

EXP −→ ((EXP) EXP OP (EXP))
EXP −→ NUM
EXP −→ VAR
VARLIST −→ VAR, VARLIST | ε
OP −→ and | or | implies | iff
COMPARE −→ = | �= | ≥ | ≤ | < | >
EXP OP −→ + | − | × | /
NUM −→ [0-9]+
VAR −→ [A-Za-z][A-Za-z0-9]+

Fig. 1. Input language grammar

Bread [0,2], [4,5];
Milk [0,2];
Cheese [0,2];
Butter [0,2];
Apple [0,3], [6,6];
Payment [0,1000];
constraints
(Bread = Cheese + Butter);
(Apple < 2) implies (Bread > 1);
(Cheese + Butter < 3);
((Apple = 1) or (Bread = 0));
(all-diff(Milk, Cheese, Butter));
(Payment = Milk×3 + Cheese×4);

Fig. 2. Input language example

or

=

C

>

+ B

solver

==

B

and

v=7

c=1 c=0

A

C A
7A

v=2 v=7

v=9 v=3

v=3

4

v=4 v=7 v=7

v=2

c=1c=1
c=5

c=6
CSP:
B=4 or A �= 7
C+A>B
C=A

Assignment:
A=7
B=3
C=2

Fig. 3. A CSP tree and the flow of information when calculating an assignment’s cost,
where ’c’ stands for constraint cost (or penalty) and ’v’ stands for expression value.
Natural cost functions were chosen for the various operators.

nodes to operators. Nodes that are mapped to arithmetic operators represent
expressions, while nodes that are mapped to comparison operators or to logical
operators represent sub-constraints. The root node is mapped to an and operator
and its children are the individual constraints in the input CSP.

A sub-constraint node is defined by its operator and by its children. We re-
fer to sub-constraints with comparison operators as atomic, since their children
are expressions and not other sub-constraints. We refer to sub-constraints with

Preprocessing Expression-Based Constraint Satisfaction Problems 247

logical operators as compound. Global constraints such as all-different can
be implemented either as atomic operators or as compound expressions.

Nodes are implemented as objects that are sub-classed from an abstract sub-
constraint object or from an abstract expression object. Sub-constraint objects
implement (among other) the usual interface:

CalculateCost(Assignment)

which returns the cost that the sub-constraint assigns to Assignment. Expression
objects implement the interface:

CalculateValue(Assignment)

This interface returns the value of the expression in Assignment. The solver only
has access to the interfaces of the root of the constraint tree. The computational
cost of calculating the cost of the CSP tree for any single assignment is linear in
the number of nodes in the tree.1

The cost function implemented for any sub-constraint is zero if and only if the
sub-constraint is satisfied; otherwise it is positive. In addition, this cost function
should exhibit the best possible fitness-distance correlation (FDC) [12]: The fur-
ther the state is from a solution, the higher the cost of the state should be. There
are no conceptual problems with the definition of a cost function for atomic sub-
constraints, whether simple expressions or global constraints [13]. However, im-
plementing the cost of a compound sub-constraint is not as straightforward, since
it should depend only on the cost of its child sub-constraints. This is because the
same sub-constraint (and hence the same implementation of its cost function)
may span very different sub-trees of sub-constraints and variables. Some opera-
tors may benefit from the fact that there exists a cost function whose topography
is related to the topographies of the child constraints. This is the case for and
and or operators with the natural costs of sum and min of children, respectively.
However, for other operators, it may be impossible to implement a cost function
that reflects the topographies of the child constraints. Notable examples are not,
implies and iff. We address this problem in detail in Section 4.1.

3.2 The Search Scheme

A typical scheme of a greedy SLS algorithm is outlined in Algorithm 1.. The
algorithm starts with an initial assignment. In each iteration, it generates a set
of steps from the current assignment to a set of new assignments, and calcu-
lates the cost of each of the resulting assignments. If at least one step results
in an assignment with a lower cost, this assignment becomes the current one.
Otherwise, the topography of the problem is modified by giving a larger weight
to constraints that are not satisfied by the current assignment. The algorithm
1 Powerful heuristics that exploit the fact that each step in the search space usually

changes the cost of only a few of the CSP tree nodes are also applied, but are similar
to those reported elsewhere [3].

248 S. Sabato and Y. Naveh

Algorithm 1. General Scheme of Search Algorithm
Initialize A to an initial complete assignment
repeat

repeat
if cost(A) = 0 then

Return
end if
Initialize S to a set of possible steps
Calculate cost(A + s) for all s ∈ S
s1 ← argmins∈S cost(A + s)
if cost(A + s1) < cost(A) then

A ← A + s1

end if
until cost(A + s1) ≥ cost(A)
Set constraint weights such that unsatisfied constraints get a larger weight

until Timeout is reached

stops when a zero-cost assignment is reached or at timeout. One of the main dif-
ferentiators between solvers that use this scheme is the neighborhood function
that generates S.

3.3 The Search Space

In our implementation, we follow Algorithm 1 and define the neighborhood of
an assignment to be the assignments in which up to M bits are changed in the
2’s complement bit-representation of the integer variables of the CSP, where M
is given, and calculated by dynamic heuristics [14]. In this representation, an
additional unary constraint is added for each variable whose domain is not a
power of two, to enforce the domain requirement. This simple approach is favor-
able for some constraint types (e.g., less-than and greater-than). It is also
particularly useful in hardware verification where many constraints are defined
on bit-ranges [15]. However, most methods presented below can be generalized
to other representation schemes and more sophisticated neighborhood functions.

4 Model Processing for SLS

In this section we present several methods for processing the input CSP model.
The processing methods rely on implementing specific interfaces for sub-
constraints and expressions. Unlike the interfaces CalculateCost() and Cal-
culateValue() that define the semantics of the objects, the interfaces presented
below are used only by the processing algorithms and do not change the seman-
tics of the CSP. Hence, it is not necessary to implement all interfaces for all
operators in the language.

We demonstrate our methods on the grammar of Figure 1, but the meth-
ods can be applied to grammars that use other operators by implementing the
required abstract interfaces for each operator. The modeler of a CSP may thus

Preprocessing Expression-Based Constraint Satisfaction Problems 249

experiment with different types of newly-defined operators, without changing
the processing or search algorithms. This extends the regular generic interface
of the search phase to the pre-search phase. To demonstrate the operation of the
processing methods, we present the following simple CSP example.

V1,V2,V3,V4,V5,V6 [0,5000];
constraints
1. (((V3 �= V5+3) or (V5 > 10)) implies (V2 �= V3));
2. ((V4 > 11) and (V2 = V3));
3. ((V1 < 5) or ((V1 < 12) and (V1 > V3−4)));

This problem exemplifies a mixture of logical and arithmetic operators and a
diverse structure of constraints often found in real world problems. We define
the variable domains in this example to be relatively large, since the problem
is small for didactic reasons and we want to keep the search space large. In
the 2’s complement representation, each variable is represented by 13 bits and
constraints of the form Vn ≤ 5000 are added.

4.1 Transformation to Negation Normal Form

In Section 3.1, we mentioned sum and min as reasonable cost functions for the
Boolean operators and and or. We now show that other Boolean operators may
present an inherent problem to the tree structure of the cost function.

Consider the unary operator not. Let us look at a sub-constraint node
C = not(C′). We need to implement a cost function fnot such that on any com-
plete assignment A, cost(C, A) = fnot(cost(C′, A)) . For fnot to be a legal cost
function, it must output zero if C′ is not satisfied by A (i.e., if cost(C′, A) > 0)
and non-zero if C is satisfied (i.e., if cost(C′, A) = 0). The only functions that
obey these limitations are of the following form, for some k > 0:

fnot(c) =

{
k for c = 0
0 otherwise

This implies that fnot has zero gradient when it is unsatisfied, leaving no possibil-
ity of finding a satisfying assignment using gradient descent (’greedy’) methods.
In other words, the not operator ‘hides’ information on the location of minima
in its child sub-constraint cost function. A similar problem is encountered with
the logical operators implies and iff. All these operators are, however, a basic
part of any natural expression language. Our first processing method therefore
transforms the model to negation normal form (NNF), which substitutes the
ill-behaved operators with the better-behaved and and or.

The NNF transformation is applied in the regular manner to compound sub-
constraints realizing the above operators. Atomic sub-constraint operators need
to implement the following interface in order to take advantage of this method:

250 S. Sabato and Y. Naveh

GetNegatedOperator().

For example, the implementation of the = operator would return the opera-
tor �=, the operator > would return the operator ≤, and the global operator
all-different would return its negation some-equal. The transformation is
applied to the input CSP recursively from top to bottom. Its time-complexity
is linear in the size of the CSP tree and the resulting tree is about the same
size as the original one. In our example CSP, the NNF transformation changes
constraint No. 1 to: (((V3 = V5 + 3) and (V5 ≤ 10)) or (V2 �= V3));

4.2 Reducing the Search Space Size

Two processing methods presented here perform low-cost inferences that enable
the pruning of large parts of the search space for which search is useless. These
inferences are special and simple cases of domain reductions that could have also
been achieved using propagators in an arc-consistency algorithm. While there
are many ways to combine arc-consistency with local search (see [16] for an
early example), the overall search may be prohibitive in problems that are not
suitable for arc-consistency methods. In contrast, here we limit our processing
methods to ones whose processing cost is linear in the size of the CSP tree, and
we apply the methods only on the initial CSP model before starting SLS. Hence,
our search is dominated by SLS and the inference cost is usually negligible.

The two methods presented in this section rely on the dimensions defining the
search space. In a bit-representation (sub-section 3.3), each dimension is defined
by a single bit. In other representations, each dimension may correspond to a
single CSP variable or to any combination of variables’ values.

If the cost function does not depend on the dimension’s value in any assign-
ment, the solver does not need to change this value during search. We term
such a dimension unimportant. For example, in the bit-representation, the least-
significant-bit of a variable X in the constraint “X > 5” is unimportant. Alter-
natively, if we can infer in advance that the value in a given dimension is the
same for all solutions, the solver can set the value to this fixed value and remove
the dimension from the search space. We refer to such a dimension as predeter-
mined. An example of a predetermined dimension in the bit-representation is
the least-significant-bit of a variable V constrained by “V mod 2 = 0”.

Finding Unimportant Dimensions. We find unimportant dimensions by
having sub-constraint- and expression-objects implement the interface:

GetDependentDimensions()

which returns the list of dimensions that may affect the object’s cost or value.
Dimensions that do not appear in the list returned by the root node are unimpor-
tant. Note that finding all unimportant dimensions in a general CSP is NP-hard:

Preprocessing Expression-Based Constraint Satisfaction Problems 251

If the CSP includes one constraint that is a 3-CNF formula, deciding whether
there are any important dimensions is tantamount to finding whether the formula
is satisfiable.

In our CSP example, the variable V6 is not used by any constraint; Hence,
all its bits are found to be unimportant. The same applies to the two least-
significant-bits of V4. Additional unimportant bits of this CSP will be found
after other processing methods are applied.

Finding Predetermined Dimensions. We find predetermined dimensions
(PDs) using a recursive and iterative algorithm: Each sub-constraint node im-
plements the interface

InferPredeterminedDimensions(CurrentPredeterminedDimensions)

which returns a set of PDs along with their predetermined value. For atomic
sub-constraints, the interface uses the currently known PDs and tries to find
new PDs according to its own semantics. For example, in a bit-representation,
in the atomic constraint “X < 5”, the bits higher than the 3 least-significant-bits
in X are zero.

For a compound sub-constraint, the interface calls InferPredetermined-
Dimensions(CurrentPredeterminedDimensions) for each of its child sub-cons-
traints, and decides on the actual PDs according to its own semantics. For ex-
ample, an and sub-constraint returns the union of the results of the child con-
straints, while an or sub-constraint returns the intersection of the results of
the child constraints. Since new PDs are decided according to current ones, the
process is iterative and stops when no more PDs are found. In our CSP example,
we infer from the third constraint that the nine most-significant-bits of V1 are
predetermined to be 0.

4.3 Dealiasing

The Dealiasing processing method finds and enforces aliases. An alias is a pair
(V, f(V)) of a variable and a function of other CSP variables, such that V = f(V)
in any solution to the CSP. Dealiasing limits the search space to assignments
that satisfy the aliases.

An alias can be inferred from a sub-constraintV1,V2 [0,M];
constraints
1. (V1 = M) or (V1 = 0);
2. (V2 = M) or (V2 = 0);
3. (V1 = V2)

node of the form “V = EXP”, where V is a vari-
able and EXP an expression,2 but only if the
sub-constraint’s path to the root node is com-
posed only of and (or equivalent) operators. Af-
ter collecting all the aliases that can be identified

in the CSP, all the references to the aliased variables are replaced by references
to the corresponding functions. Before describing the Dealiasing algorithm, let
2 An alias can also be inferred from a sub-constraint if it can be transformed to a

functional form. For example V1 + V4 = 7 can be transformed to V1 = 7−V4.

252 S. Sabato and Y. Naveh

us illustrate the criticality of aliasing for SLS3. Consider the simple CSP in the
above box, for some positive number M . A natural cost derived from the and
operator at the root of the CSP, and or operators of constraints 1 and 2 is:

Cost = min (||M − V1||, ||V1 − 0||) + min (||M − V2||, ||V2 − 0||) + ||V1 − V2||

where ||A−B|| is the distance between A and B according to some defined metric.
For any choice of a reasonable linear metric (e.g., absolute-value of difference,
or Hamming distance) this cost induces huge plateaus in the search space. For
example, all states for which V1 is closer to M than to 0, while V2 is closer to
0 are plateau states. This renders the problem, as formulated, hard for SLS.

After Dealiasing, the CSP contains two copies of the second constraint and
the cost becomes Cost = 2 min (||M − V2||, ||V2 − 0||). This cost has two global
minima, no local minima, and no plateaus.

The Dealiasing algorithm uses two sub-constraint node interfaces:

GetAliases()
ApplyAliases()

GetAliases() returns a list of all the aliases found in the sub-constraint: For
example, an and sub-constraint returns the union of the lists returned by its
children, while an or sub-constraint returns no aliases. ApplyAliases() replaces
all occurrences of the aliased variable with a reference to the function to which
the variable is aliased (possibly turning the CSP tree into a DAG).

The Dealiasing processing method is implemented by calling GetAliases()
for the root node of the CSP tree to get a set of aliases A, finding a consistent
subset of aliases A1 ⊆ A (in order to avoid cyclic definitions between the aliases),
and calling ApplyAliases() for the root node with A14. In our CSP example
we now infer that V2 is aliased to V3 from the second constraint. We replace all
occurrences of V2 by V3 accordingly. The reformulated problem is now:

1. ((V3 = V5+3) and (V5 ≤ 10)) or (V3 �= V3);
2. ((V4 > 11) and (V3 = V3));
3. ((V1 < 5) or ((V1 < 12) and (V1 > V3−4)));

4.4 Pruning – Removing Tautologies and Contradictions

In the prune processing method, we recursively remove sub-constraints that are
identified as tautological or contradictory. Tautological sub-constraints are ones
that would be satisfied in any assignment consistent with known predetermined

3 In contrast, Dealiasing hardly helps reach a solution in MAC-based algorithms be-
cause an aliased constraint of the form V = f(V) will just propagate from V to V.

4 Finding a maximal set A1 is equivalent to the Directed Feedback Edge Set problem,
which is NP-complete [17]. We therefore implement a heuristic algorithm that does
not guarantee global maximality.

Preprocessing Expression-Based Constraint Satisfaction Problems 253

dimensions. Contradictory sub-constraints would be unsatisfied by any such as-
signment. We call both contradictory and tautological sub-constraints redundant
sub-constraints. Removing redundant sub-constraints serves three purposes:

1. The cost function of the pruned CSP exhibits better FDC. For example,
suppose that in a sub-constraint of the form “C1 or C2”, C1 is contradic-
tory. Then the natural cost function min(Cost(C1), Cost(C2)) may exhibit a
local minimum where Cost(C1) is minimized. Replacing “C1 or C2” by the
equivalent “C2” immediately prevents this problem.

2. Creating more opportunities for inferences by other processing methods. In
Section 4.5, we exemplify this effect on our CSP example.

3. Reducing the computational toll of calculating the cost function.

Though, in general, it has been shown that removing redundant constraints
does not necessarily improve gradient solutions [18], in our experiments this has
proved to be a vital step in complex expression-based problems. We attribute
this to the combination of the three items listed above. These items may be less
relevant to simple and well-structured CSPs. (Item 2 is only relevant to solvers
applying our other processing methods.)

The following interface is implemented for any sub-constraint node type:

Prune()

To run the pruning method, Prune() is called for the CSP tree root node.
Prune() for an atomic sub-constraint may identify two kinds of redundant sub-
constraints. First, it may identify patterns syntactically recognized as redundant,
for instance “A > A”, “A = A”. (These patterns may exist in real-world CSPs
that were generated automatically.) Second, it may identify constraints that
are redundant due to constants and predetermined dimensions. The Prune()
method for a compound sub-constraint may call Prune() for each of its child
constraints and operate according to its own semantics. For example, the sub-
constraint and would remove a tautological child node and would report itself
as contradictory if one of its child nodes is contradictory. In our CSP example,
the pruning method finds a contradiction and a tautology, resulting in:

1. (V3 = V5+3) and (V5 ≤ 10);
2. (V4 > 11);
3. (V1 < 5) or ((V1 < 12) and (V1 > V3−4)));

4.5 Combining Processing Methods

We apply an iterative algorithm to make full use of the interaction between the
processing methods, stopping when no more changes occur.

254 S. Sabato and Y. Naveh

Transform to NNF
repeat

Find Predetermined Dimensions
Apply Dealiasing
Prune

until No changes have occurred in the last iteration
Find Unimportant Dimensions

This algorithm runs for two iterations on our CSP example. The first iteration
results in the form given in Section 4.4. The second iteration then finds more
predetermined dimensions in V5 and results in the alias (V3,V5+3). This allows
another round of successful pruning. The final CSP is:

1. (V5 ≤ 10)
2. (V4 > 11);
3. (V1 < 5) or ((V1 < 12) and (V1 > (V5+3)−4)));
The 9 most-significant-bits of V1 and of V5 are predetermined to be 0.

This formulation is invariant to all processing methods. The unimportant di-
mensions are now inferred to be all bits of variables V2, V3 and V6, and the two
unimportant bits of V4 found earlier.

5 Experimental Results

Experimental results were obtained using a tool called Stocs, which implements
Simulated Variable Range Hopping (SVRH) [14]. Run-times reported include
both the preprocessing and search phases, though the latter dominates in all
cases not solved by preprocessing alone. The experiments were run on a single-
core Intel (TM) 3GHz PC running Red-Hat Linux.

5.1 Artificial Example

Results for the CSP example are presented in the following table for several
configurations of the processing methods. In the first column, results of using all
processing methods are shown. In each of the other columns, one of the methods
was disabled. Each scenario was run 10 times, with different starting states and
random seeds. The timeout was 10 seconds.

All No Predetermined No NNF No

Methods Dimensions transformation Dealiasing

Solved 10 10 0 9

Avg. Time (sec) 0.10 0.26 N/A 2.08

Min. Time (sec) 0.08 0.10 N/A 0.33

Max. Time (sec) 0.12 0.43 N/A 5.97

Preprocessing Expression-Based Constraint Satisfaction Problems 255

5.2 ‘Still Life’ CSP

The table on the right lists re-
sults for the Still Life problem
(prob0032 in CSPLib). The prob-
lem was modeled in a straight-
forward manner using the input
language of Figure 1. To change
it from an optimization prob-
lem to a CSP, a constraint re-
quiring a minimum number of
live cells was added. Each Life
CSP was run 20 times with
and without our processing meth-
ods, starting from different initial
states and random seeds. Times
are in seconds. The timeout was
500 seconds. The main process-
ing method to affect the Still Life
problem is the NNF transforma-
tion described in Section 4.1.

Board Live Solved with Avg. Solved w/o Avg.

Size Cells Processing Time Processing Time

6X6 14 100% 21 70% 188
6X6 15 95% 33 35% 245
6X6 16 100% 54 40% 241
6X6 17 100% 42 10% 294
6X6 18 100% 57 25% 290
7X7 24 95% 60 15% 355
7X7 25 75% 112 5% 356
7X7 26 70% 126 0 N/A
7X7 27 65% 139 0 N/A
7X7 28 65% 219 0 N/A
8X8 30 95% 78 0 N/A
8X8 32 75% 167 0 N/A
9X9 35 90% 152 0 N/A
9X9 37 70% 161 0 N/A
9X9 39 80% 138 0 N/A

5.3 Processor Verification

Most CSPLib problems are not natural candidates for testing our processing
methods, as they have a simple recurring structure that can be easily modeled
without requiring automatic processing to improve modeling. Industrial prob-
lems, on the other hand, can be very large and irregular, thus making it hard to
manually model them in a way that would not hinder the results of an SLS solver.
Moreover, the model is sometimes generated in a distributed fashion, making it
even harder to take into account global considerations such as removing redun-
dancies when modeling the CSP. Hardware verification [15] is one example of a
domain where such problems are abundant. Our processing methods were ap-
plied to an industrial processor verification problem, generated automatically
from user-interfaces for modeling the micro-architecture of the processor [19].
Typical problems consisted of 1,500 variables and 15,000 constraints. Details of
the results of this work are beyond the scope of the paper, however, we can
report that our processing methods reduced the number of variable-bits in the
search space from about 100,000 to about 33,000, and enabled the SLS solver to
reach significantly deeper local minima at a much shorter run-time.

5.4 Random Expression-Based CSPs

In order to test our algorithm in a less controlled environment, we generated a
new type of random CSPs. Given a formal grammar of an input language such
as the one shown in Figure 1, we consider ensembles of problems created by

256 S. Sabato and Y. Naveh

probabilistic formal grammar rules that generate a subset of the input language.
A random expression-based problem is defined by < N, D, M, G, p >, where N
is the number of variables, D is the domains, M is the number of constraints, G
is the formal grammar, and p is a probability-vector for the probabilistic rules.
Like many real-world problems, random problems generated using this scheme
exhibit little regularity despite the small number of parameters that control their
creation, with constraints of varying tree-depth and complexity. 5

Table 1. Probabilistic Grammar for Random CSP Generation

CONS −→ (0.9) PC | (0.1) (not PC)
EXP −→ (0.1) (EXP ARITH EXP) | (0.72) VAR | (0.08) NUM
PC −→ (0.3) (CONS OP CONS) | (0.7) (EXP COMP EXP)
OP −→ (0.25) and | (0.25) or | (0.25) implies | (0.25) iff
ARITH −→ (0.33) + | (0.66) *
COMP −→ (0.35) > | (0.35) < | (0.15) = | (0.15) �=
VAR −→ Uniform probability over variables
NUM −→ Uniform probability over domain range

We generated 300 random CSPs according to the probabilistic grammar of
Table 1. Each CSP had 50 variables with domains [0, 1000], and 20 constraints
generated by the non-terminal CONS. Relatively large variable domains were
chosen because such domains are characteristic of many industrial problems, such
as verification [15] and workforce management [20]. Additionally, the problem
is much harder to solve with larger domains. Making it harder by increasing
the number of variables and constraints would make it cumbersome to analyze.
The structure of the random expressions created by this particular grammar is
reminiscent in many ways of the processor verification problems discussed above.

The solver was run 20 times on each CSP in 4 configurations. A total of 156
CSPs were solved at least once. For these, we compared solve-times between a
configuration that involves no processing methods, a configuration that includes
all methods, and configurations that disable one method. We consider only sta-
tistically significant differences in solve-times6. Figure 4 shows the improvements
in solve-times achieved for each CSP in the different configurations, compared
to solving the CSP with no preprocessing. The following table summarizes the
results, again comparing solve-times when using some preprocessing methods to
using no preprocessing.

Applying All No Predetermined No NNF No Dealiasing

Methods Dimensions transformation

Improvement 79% (123) 69% (107) 39% (61) 40% (63)
Deterioration 17% (26) 18% (28) 6% (9) 10% (16)
No Difference 4% (7) 13% (21) 55% (86) 50% (77)

5 A repository of CSP instances generated according to this scheme and used in
this and the next sub-section can be found in http://www.haifa.il.ibm.com/
projects/verification/octopus/random.

6 A paired t-test with significance level of 0.05 was used.

Preprocessing Expression-Based Constraint Satisfaction Problems 257

0 20 40 60 80 100 120 140 160
−6

−4

−2

0

2

4

6

8

10

Fig. 4. Effect of the methods on ran-
dom expression CSPs. The X axis cor-
responds to 156 CSPs, sorted by as-
cending ratio of improvement by our
methods. The Y axis is log2 of the ra-
tio of time improvement by each con-
figuration. Points above the zero line
are ones in which improvement was
achieved. Legend: circle = no prede-
termined dimensions, plus = no NNF-
transformation, star = no Dealiasing,
x = all methods applied.

5.5 Phase Transition in Random Expression-Based Problems

It is well documented that random tabular CSP and random SAT problems
exhibit satisfiability phase transitions [21,22]. There exists a critical curve that
describes the percentage of satisfiable instances of the random ensemble as a
function of some parameter, e.g., the ratio between the number of constraints
and the number of variables. Given a structure of the random problem, in the
thermodynamic limit (i.e., with a large number of variables), the critical curve
is universal — it does not depend on specifics such as the number of variables
in the problem. Furthermore, instances with near-critical parameter values are
found to be the hardest for systematic search.

We report a preliminary investigation of this phenomena on the random
expression-based CSPs defined in the previous section. We used the grammar of
Figure 1 with a probability-vector p to generate ensembles of 50 random prob-
lems for given numbers of variables NV and constraints NC . Figure 5 shows the
percentage of problems solved by Stocs within a timeout of up to one minute.7

A clear transition from solvable to unsolvable is observed as a universal function
of NC/NV . We also find that the exact location of the transition depends on
the probability-vector p. As with systematic search, the hardest instances are
around the critical area. Although the solver is not complete, it easily identifies
unsatisfiable instances for CSPs far above the critical area during the application
of its model-processing methods.

6 Summary

We presented a set of methods for processing a CSP model that is expressed
using an expression language, in order to make this model more suitable for
solving with an SLS solver. We used an architecture that allows definition of op-
erators as part of an input expression language for SLS solvers. By implementing

7 The timeout was set to a value much larger than the longest time for which a solution
was ever found at a given combination of NV and NC .

258 S. Sabato and Y. Naveh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

of
 S

ol
ve

d
In

st
an

ce
s

Ratio of Constraints to Variables

10 Variables
30 Variables
50 Variables

Fig. 5. Phase transition in expression based
CSPs

the abstract interfaces for a new oper-
ator, the CSP defined by those opera-
tors automatically benefits from the
model-processing methods we intro-
duced. This extends the clear separa-
tion between the model and the search
algorithm to the pre-search phase.

One part of the work that we
only briefly investigated covers the
random expressions introduced in
sub-sections 5.4. We conjecture that
this form of random CSPs resembles
real world CSPs much better than
random-table CSPs or random SAT
instances. More specifically, by tuning the rules and parameters of the formal
grammar, different ensembles may be generated, each possibly resembling a dif-
ferent application domain. Investigation of such ensembles may guide the design
of algorithms and heuristics suitable for the particular domain.

Acknowledgments

We are grateful to Eyal Bin for presenting us with the processor verification
problem and for defining much of the syntax of the expression language we used.

References

1. van Hentenryck, P.: The OPL optimization programming language. MIT Press,
Cambridge, MA, USA (1999)

2. Hoos, H.H., Steutzle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

3. van Hentenryck, P., Michel, L.: Control abstractions for local search. In: CP 2003.
(2003)

4. Nareyek, A.: Using global constraints for local search. In: Constraint Programming
and Large Scale Discrete Optimization, DIMACS Vol. 57. (2001) 9–28

5. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 26. (1996)

6. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220 (1983) 671–680

7. Minton, S., Johnston, M., Phillips, A., Laird, P.: Solving large-scale constraint
satisfaction and scheduling problems using a heuristic repair method. In: AAAI-
90. (1990) 17–24

8. Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)
9. Hansen, P., Mladenovic, N.: Introduction to variable neighbourhood search. In:

Metaheuristics: Advances and Trends in Local Search Procedures for Optimization.
(1999) 433–458

Preprocessing Expression-Based Constraint Satisfaction Problems 259

10. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In:
AAAI-02. (2002)

11. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAI-
05. (2005) 35–40

12. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for
combinatorial global optimizations. Operations Res. Lett. 16(3) (1994) 101–113

13. Bohlin, M.: Improving cost calculations for global constraints in local search. In:
CP 2002. (2002) 772

14. Naveh, Y.: Stochastic solver for constraint satisfaction problems with learning of
high-level characteristics of the problem topography. In: Local Search Techniques
in Constraint Satisfaction (LSCS-04). (2004)

15. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Magazine
(2007)

16. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. Lecture Notes in Computer Science 1520 (1998) 417

17. Garey, M., Johnson, D.: Computers and Intractability: a Guide to Theory of NP-
completeness. W.H.Freeman (1979)

18. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press
(2005)

19. Adir, A., Bin, E., Peled, O., Ziv, A.: Piparazzi: A test program generator for micro-
architecture flow verification. In: Eighth IEEE International High-Level Design
Validation and Test Workshop, HLDVT-03. (2003) 23–28

20. Naveh, Y., Richter, Y., Altshuler, Y., Gresh, D.L., Connors, D.P.: Workforce op-
timization: Identification and assignment of professional workers using constraint
programming. IBM Journal or Research and Development (2007)

21. Prosser, P.: An empirical study of phase transition in binary constraint satisfaction
problems. Artificial Intelligence 81 (1996) 81–109

22. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Ttroyansky, L.: Deter-
mining computational complexity from characteristic ’phase transition’. Nature
400 (1999) 133–137

The Deviation Constraint

Pierre Schaus1, Yves Deville1, Pierre Dupont1, and Jean-Charles Régin2

1 Université catholique de Louvain, Belgium
{pschaus,yde,pdupont}@info.ucl.ac.be

2 ILOG, France
regin@ilog.fr

Abstract. This paper introduces DEVIATION, a soft global constraint to
obtain balanced solutions. A violation measure of the perfect balance
can be defined as the Lp norm of the vector variables minus their mean.
SPREAD constraints the sum of square deviations to the mean [5,7] i.e. the
L2 norm. The L1 norm is considered here. Neither criterion subsumes the
other but the design of a propagator for L1 is simpler. We also show that
a propagator for DEVIATION runs in O(n) (with respect to the number of
variables) against O(n2) for SPREAD.

1 Introduction

We consider the Balanced Academic Curriculum Problem (BACP) [1] as a mo-
tivating example. The goal is to assign a period to each course in a way that the
prerequisite relationships are satisfied and the academic load of each period is
balanced. This last constraint makes BACP a Constraint Optimization Problem
where the objective is to maximize the balancing property.

In BACP the mean m of a solution is a constant of the problem since the
load of each course and the number of periods are given. A hard balancing
constraint would impose all periods to take a same load m. This often results
in an over-constrained problem without solution. For a set of variables X =
{X1, X2, ..., Xn} and a given fixed mean m, a violation measure of the perfect
balance property can be defined as the Lp-norm of the vector [X − m] with
X = [X1, X2, ..., Xn], m = [m, m, ..., m] such that

∑n
i=1 Xi = n.m. The Lp-

norm of [X − m] is defined as (
∑n

i=1 |Xi − m|p)
1
p with p ≥ 0.

Following the scheme proposed by Régin et al. [6] to soften global constraints,
we define a violation of the perfect balance constraint as a cost variable Lp in
the global balance constraint: soft-balance(X , m, Lp) constraint holds if and
only if Lp-norm([X − m]) = Lp and

∑n
i=1 Xi = n.m.

The interpretation of the violation to the mean for some specific norms is
given below.

• L0: |{X ∈ X|X �= m}| is the number of values different from the mean.
• L1:

∑
X∈X |X − m| is the sum of deviations from the mean.

• L2:
∑

X∈X (X − m)2 is the sum of square deviations from the mean.
• L∞: maxX∈X |X − m| is the maximum deviation from the mean.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 260–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Deviation Constraint 261

Note that none of these balance criteria subsumes the others. For instance,
the minimization of L1 does not imply in general a minimization of criterion
L2. This is illustrated on the following example. Assume a constraint problem
with four solutions given in Table 1. The most balanced solution depends on
the chosen norm. Each solution exhibits a mean of 100 but each one optimizes
a different norm.

Table 1. Illustration showing that no balance criterion defined by the norm L0, L1,
L2 or L∞ subsumes the others. The smallest norm is indicated in bold character. For
example, solution 2 is the most balanced according to L1.

sol. num. solution L0 L1 L2 L∞
1 100 100 100 100 30 170 2 140 9800 70

2 60 80 100 100 120 140 4 120 4000 40

3 70 70 90 110 130 130 6 140 3800 30

4 71 71 71 129 129 129 6 174 5046 29

The norm L∞ has already been used in two previous works [2,4] to solve
BACP. SPREAD is a constraint for L2 [5,7]. A constraint for L0 can easily be
implemented using an ATLEAST(i, [X1, ..., Xn], m) constraint for |{X ∈ X|X �=
m}| ≤ i and a SUM([X1, ..., Xn], n.m) constraint to ensure a mean of m. In this
paper, a global constraint and its propagators for the L1 norm with fixed mean
is presented. This constraint is formulated in the following definition:

Definition 1. A set of finite domain integer variables X = {X1, X2, ..., Xn},
one mean value m and one interval variable D are given.

The constraint DEVIATION(X , m, D) states that the collection of values taken
by the variables of X exhibits an arithmetic mean m and a sum of deviations to
m of D. More formally, DEVIATION(X , m, D) holds if and only if

n.m =
n∑

i=1

Xi and D =
n∑

i=1

|Xi − m|.

For the constraint to be consistent, n.m must be an integer. As a consequence
n.D is also an integer.

Outline of the Paper

Section 2 mainly reviews preliminaries notions relative to constraint program-
ming such as filtering, domain-consistency and bound-consistency. We also define
some useful notations. Section 3 motivates the need of a global filtering algo-
rithm for DEVIATION in terms of filtering. Section 4 explains the propagators
narrowing the domain of D. This filtering makes use of the minimization and
maximization of the sum of deviations. The minimization is solved in linear

262 P. Schaus et al.

time. The maximization is proved to be NP-complete; however, an approxi-
mated upper bound can be calculated in linear time as well. Section 5 describes
the filtering algorithm from m and D to the variables X . The idea is similar to a
bound consistency filtering algorithm for a SUM constraint but including the sum
of deviations constraint. Section 6 shows that our propagators do not achieve
bound-consistency. Section 7 gives a relaxation of SPREAD with DEVIATION. Fi-
nally, Section 8 evaluates the efficiency of the presented propagators in terms of
filtering on randomly generated instances.

2 Background and Notations

Basic constraint programming concepts largely inspired from Section 2 of [8] are
introduced.

Let X be a finite-domain (discrete) variable. The domain of X is a set of
ordered values that can be assigned to X and is denoted by Dom(X). The mini-
mum (resp. maximum) value of the domain is denoted by Xmin = min(Dom(X))
(resp. Xmax = max(Dom(X)). Let X = {X1, X2, ..., Xk} be a sequence of vari-
ables. A constraint C on X is defined as a subset of the Cartesian product of
the domains of the variables in X : C ⊆ Dom(X1) × Dom(X2) × ... × Dom(Xk).
A tuple (v1, ..., vk) ∈ C is called a solution to C. A value v ∈ Dom(Xi) for some
i = 1, ..., k is inconsistent with respect to C if it does not belong to a tuple of
C, otherwise it is consistent. C is inconsistent if it does not contain a solution.
Otherwise, C is called consistent.

A constraint satisfaction problem, or a CSP , is defined by a finite sequence
of variables X = {X1, X2, ..., Xn}, together with a finite set of constraint C each
on a subset of X . The goal is to find an assignment Xi := v with v ∈ Dom(Xi)
for i = 1, ..., n, such that all constraints are satisfied. This assignment is called
a solution to the CSP .

The solution process of constraint programming interleaves constraint propa-
gation, or propagation in short, and search. The search process essentially con-
sists of enumeration all possible variable-value combinations, until a solution is
found or it is proved that none exists. We say that this process constructs a
search tree. To reduce the exponential number of combinations, constraint prop-
agation is applied to each node of the search tree: Given the current domains
and a constraint C, the propagator for C removes domain values that do not
belong to a solution to C. This is repeated for all constraints until no more do-
main value can be removed. The removal of inconsistent domain values is called
filtering.

In order to be effective, filtering algorithms should be efficient, because they
are applied many times during the search process. They should furthermore
remove as many inconsistent values as possible. If a filtering algorithm for a
constraint C removes all inconsistent values from the domains with respect to
C, we say that it makes C domain-consistent. It is possible to achieve domain-
consistency in polynomial time for some constraints such as AllDiff but for
other constraints such as SUM this would be too costly. In such cases a weaker

The Deviation Constraint 263

notion of consistency called bounds-consistency (also called interval-consistency)
appears to be highly cost-effective. A constraint C is bound consistent if the
bounds of the domain of each variable implied in C belongs to at least one
solution of C. The idea it to bound the domain of each variable by an interval
and make sure that the end-points of the intervals obey the domain-consistency
requirement. If not, the upper and lower bounds of the intervals can be tightened
until bounds-consistency is achieved.

Proposition 1 states that achieving domain-consistency for DEVIATION is not
more difficult than for arithmetic constraints in general.

Proposition 1. Achieving domain-consistency for DEVIATION is NP-Complete.

Proof. The constraint SUM(X1...Xn, S) states that
∑n

i=1 Xi = S. It is well known
that achieving domain consistency for SUM is NP-Complete (The subset sum
problem [3] can easily be reduced to achieving domain-consistency for SUM). In
the particular case where Dom(D) = [0, +∞] and m = S/n, achieving domain-
consistency for SUM constraint reduces to achieving domain-consistency for
DEVIATION(X , m, D). �

Domains of variables are considered as full and can be described by the interval
Dom(X) = [Xmin..Xmax].

Definition 2 introduces some useful notations.A numerical example is also
given in Example 1.

Definition 2. For a variable X and a given value m, the upper bounds on the
right and left deviation are respectively

• rd(X, m) = max(0, Xmax − m) and
• ld(X, m) = max(0, m − Xmin).

The sum of these values over X are respectively

• RD(X , m) =
∑

X∈X rd(X, m) and
• LD(X , m) =

∑
X∈X ld(X, m).

The same idea holds for the lower bounds on the deviations:

• rd(X, m) = max(0, Xmin − m).
• ld(X, m) = max(0, m − Xmax).
• RD(X , m) =

∑
X∈X rd(X, m).

• LD(X , m) =
∑

X∈X ld(X, m).

For a variable Xi ∈ X we define:

• LDi(X , m) = LD(X , m) − ld(Xi, m) and
• RDi(X , m) = RD(X , m) − rd(Xi, m).

To alleviate notations, (X , m) are sometimes omitted. For example LD(X , m)
is simply written LD.

264 P. Schaus et al.

Example 1. Let X={X1, X2, X3, X4} be four variables with domains Dom(X1)=
[8, 10], Dom(X2) = [4, 7], Dom(X3) = [1, 5] and Dom(X4) = [3, 4]. The following
table exhibits the quantities introduced in Definition 2.

i rd(Xi, 5) ld(Xi, 5) rd(Xi, 5) ld(Xi, 5)
1 5 0 3 0
2 2 1 0 0
3 0 4 0 0
4 0 2 0 1∑

i 7 7 3 1
RDi(X , 5) LDi(X , 5) RDi(X , 5) LDi(X , 5)

1 2 7 0 1
2 5 6 3 1
3 7 3 3 1
4 7 5 3 0

The filtering for DEVIATION is based on the next theorem stating that the sum
of deviations above and under the mean are equal.

Lemma 1. Let X = {X1, ..., Xn}. The equality n.m =
∑

X∈X X holds if and
only if

∑
X>m(X − m) =

∑
X<m(m − X).

Proof. n.m =
∑

X∈X X can be rewritten 0 =
∑

X∈X X − n.m =
∑

X>m(X −
m) +

∑
X<m(X − m)+

∑
X=m(X − m) =

∑
X>m(X − m) −

∑
X<m(m − X). �

Property. 1 Let X = {X1, ..., Xn}. An assignment on X satisfies:

•
∑

X>m(X − m) ∈ [RD(X , m), RD(X , m)] and

•
∑

X<m(m − X) ∈ [LD(X , m), LD(X , m)].

Theorem 1. DEVIATION(X , m, D) is consistent only if the following conditions
are satisfied:

1. RD(X , m) ≤ Dmax

2

2. LD(X , m) ≤ Dmax

2

3. RD(X , m) ≥ Dmin

2

4. LD(X , m) ≥ Dmin

2

5.
[
LD(X , m), LD(X , m)

]
∩

[
RD(X , m), RD(X , m)

]
�= φ

Proof. 1. If RD(X , m) > Dmax

2 then
∑

X>m(X − m) > Dmax

2 (Property 1).
Hence

∑n
i=1 |Xi − m| > Dmax (by Lemma 1).

2., 3. and 4. similar to 1.
5. Direct consequence of Lemma 1 and Property 1. �

The Deviation Constraint 265

3 Naive Implementation

This section explains why a naive implementation of DEVIATION by decomposi-
tion into more elementary constraints is not optimal in terms of filtering.

As stated in Definition 1, DEVIATION(X , m, D) holds if and only if n.m =∑n
i=1 Xi and D =

∑n
i=1 |Xi −m|. This suggests a natural implementation of the

constraint by decomposing it into two SUM constraints. Figure 1 illustrates that
the filtering obtained with the decomposition is not optimal.

m ,m

Dom X2

Dom X1

X1 X2 2m

X1 m X 2 m Dmax

Dmax

Fig. 1. Filtering of X1 with decomposition and with DEVIATION

Assume two variables X1, X2 with unbounded finite domains and the con-
straint

DEVIATION({X1, X2}, m, D ∈ [0, Dmax]).

The diagonally shaded square (see Figure 1) delimits the set of points such that
|X1 − m| + |X2 − m| ≤ Dmax. The diagonal line is the set of points such that
X1 + X2 = 2.m. The unbounded domains for X1 and X2 are bound-consistent
for the mean constraint. The vertically shaded rectangle defines the domain of
X1 after a bound-consistent filtering for |X1 − m| + |X2 − m| ≤ Dmax. The
set of solutions for DEVIATION is the bold diagonal segment obtained by inter-
secting the square surface and the diagonal line. It can be seen on the figure
that more filtering is possible. Bound consistent filtering on the bold diago-
nal segment leads to a domain of X1 defined by the diagonally shaded rectan-
gle. In conclusion a bound consistent filtering for the decomposition leads to
Dom(X1) = Dom(X2) = [m − Dmax, m + Dmax] while a bound consistent fil-
tering for DEVIATION({X1, X2}, m, D ∈ [0, Dmax]) leads to domains two times
smaller Dom(X1) = Dom(X2) = [m − Dmax

2 , m + Dmax

2].

266 P. Schaus et al.

4 Filtering of D

The filtering of D to achieve bound consistency requires to solve two optimization
problems: the minimization and maximization of the sum of deviations from a
given mean m. Definition 3 defines a relaxation of these problems by allowing
rational assignments.

Definition 3. D and D denote the optimal values to problems:

D = min
n∑

i=1

|Xi − m| and D = max
n∑

i=1

|Xi − m|

such that :
n∑

i=1

Xi = n.m

Xmin
i ≤ Xi ≤ Xmax

i , 1 ≤ i ≤ n

Xi ∈ Q, 1 ≤ i ≤ n.

Values D and D can be used to filter the domain of D:

Dom(D) ←− Dom(D) ∩ [D, D].

The remaining of this section mainly explains how D can be computed in linear
time with respect to the number of variables n = |X |. Unfortunately finding D
is an NP-complete problem and the best we can do is to design a good upper
bound for it as explained at the end of this section.

Definition 4 characterizes an optimal solution to the problem of finding D.

Definition 4 (up and down centered assignment). Let X = {X1, ..., Xn}.
Let A : X → Dom(X) be an assignment of X ∈ X . The quantity s(A) denotes
the sum of assigned values: s(A) =

∑
X∈X A(X).

An assignment A is said to be up-centered when:

A(X)
{

= Xmin if Xmin ≥ s(A)/n
≤ s(A)/n otherwise

In other words, each variable with minimum domain value larger than the mean
of the assigned values takes its minimum domain value and the other variables
take values smaller than the mean of the assigned values.

An assignment A is said to be down-centered when:

A(X)
{

= Xmax if Xmax ≤ s(A)/n
≥ s(A)/n otherwise

In other words, each variable with maximum domain value smaller than the mean
of the assigned values takes its maximum domain value and the other variables
take values larger than the mean of the assigned values.

The Deviation Constraint 267

Example 2. Considering the variables and domains of Example 1, the following
assignment is up-centered with mean 17/4:

A(X1) = 8, A(X2) = 4, A(X3) = 2, A(X4) = 3.

Theorem 2. An assignment is an optimal solution to the problem of finding D
if and only if it is a down-centered assignment or an up-centered assignment of
mean m.

Proof. (if) Given an assignment A of mean m i.e. s(A) = n.m. The only way
to decrease the sum of deviations while conserving the mean m is to find a pair
of variables Xi, Xj such that A(Xi) > m, A(Xi) > Xmin

i , A(Xj) < m, A(Xj) <
Xmax

j and to decrease A(Xi) and increase A(Xj) by the same quantity to make
them closer to m. By definition of a left and down centered assignment, it is
impossible to find such a pair Xi, Xj . Hence, up-centered and a down-centered
assignments are optimal solutions.

(only if) Assume an assignment A is neither down-centered nor up-centered
such that s(A) = n.m. It is possible to find at least two variables Xi, Xj ∈ X .
One with A(Xi) > m and A(Xi) > Xmin

i (violation of up-centered) and one with
A(Xj) < m and A(Xj) < Xmax

j (violation of down-centered). Let us define δ =
min

(
A(Xi) − max(Xmin

i , m), min(Xmax
j , m) − A(Xj)

)
. The assignment A(X) is

not optimal since the sum of deviations can be decreased by 2δ by modifying
the assignment on Xi and Xj : A′(Xi) = A(Xi) − δ and A′(Xj) = A(Xj) + δ. �

Theorem 3. If DEVIATION is consistent then

D = 2. max(LD (X , m), RD(X , m)) .

Proof. Assume LD ≥ RD, then it is possible to build a down-centered assign-
ment A of mean m and which is optimal by Theorem 2. For this assignment∑

A(X)<m(m − A(X)) = LD (by Definition 2 of LD). Since
∑

X>m(X − m) =∑
X<m(m − X) (by Lemma 1), the sum of deviations for this down-centered

assignment is
∑

X∈X |A(X) − m| = 2.LD.
The case LD ≤ RD is similar. The assignment is up-centered instead of

down-centered. �

Example 3. The variables and domains considered here are the same as those in
Example 1. A mean m = 5 is considered. Using the computed values LD(X , 5) = 1
and RD(X , 5) = 3 from Example 1, it can be deduced that D = 2. max(1, 3) = 6.

Consequently, filtering on D for DEVIATION(X ={X1, X2, X3, X4}, m = 5, D ∈
[0, 7]) leads to Dom(D) = [6, 7].

Theorem 4. Computing D is NP-complete.

Proof. It is possible to reduce the subset sum problem [3] to the problem of
computing D (see Definition 3). This problem is not more difficult than the
particular case where m = 0:

268 P. Schaus et al.

D = max
n∑

i=1

|Xi|

such that :
n∑

i=1

Xi = 0

Xmin
i ≤ Xi ≤ Xmax

i , 1 ≤ i ≤ n.

Given a set of n positive values {b1, ..., bn−1, T }, the subset sum problem consists
in finding if there exists a set of binary values {y1, ..., yn−1}, yi ∈ {0, 1}, 1 ≤ i < n

such that
∑n−1

i=1 yi.bi = T . The reduction is the following:

• Xmin
i = − bi

2 and Xmax
i = bi

2 for 1 ≤ i < n.

• Xn =
�n−1

i=1 bi

2 − T .

• There is a solution to the subset sum problem if and only if D ≥
�n−1

i=1 bi

2 +∣∣∣
�n−1

i=1 bi

2 − T
∣∣∣. This constraint on the optimal value ensures that the optimal

solution is such that Xi ∈ {− bi

2 , bi

2 }. The solution to the subset sum problem
is then given by yi = 1 if Xi = bi

2 and yi = 0 if Xi = −bi

2 . �

Unless P = NP , the problem of computing D is exponential (Theorem 4). As
explained in Section 2, in order to be effective, filtering algorithms should be
as efficient as possible because they are applied many times during the search
process. This is why we prefer to find efficiently a good upper bound D

↑
for D

than to find its exact value. An upper bound which can be computed in O(n) is

D
↑

=
n∑

i=1

max
(
|Xmax

i − m|, |Xmin
i − m|

)
.

The filtering on Dom(D) becomes:

Dom(D) ←− Dom(D) ∩ [D, D
↑
]

5 Filtering on X

Two propagators could be considered to filter the domain of X :

1. from Dmin and m to X and
2. from Dmax and m to X .

Achieving bound-consistency for the first propagator is NP-complete. Indeed,
checking the consistency of one value requires to maximize the sum of de-
viations which is an NP-complete problem (Theorem 4). The decomposition
of DEVIATION presented in Section 3 can however be used to realize bound-
consistency on constraint

∑
X∈X |X − m| ≥ Dmin. In any case, this filtering

is useless if one seeks a balanced solution on X . Hence, the remaining of this
section focuses on a linear time filtering algorithm for the second propagator.

The Deviation Constraint 269

The filtering is based on the computation of the values Xi and Xi introduced
in Definition 5.

Definition 5. X i and X i are the optimal values to the following problems:

Xi = max(Xi) and X i = min(Xi)

such that :
n∑

j=1

Xj = n.m (1)

n∑

j=1

|Xj − m| ≤ Dmax (2)

Xmin
j ≤ Xj ≤ Xmax

j , 1 ≤ j ≤ n, j �= i

Xj ∈ Q, 1 ≤ j ≤ n.

The filtering rule on the domain of Xi can be simply written:

Dom(Xi) ←− Dom(Xi) ∩ [Xi, Xi] (3)

Theorem 5. For a variable Xi, assuming the constraint is consistent, the fol-
lowing equalities hold:

Xi = min
(

Dmax

2
, LDi(X , m)

)
− RDi(X , m) + m.

X i = − min
(

Dmax

2
, RDi(X , m)

)
+ LDi(X , m) + m.

Proof. Only Xi is considered because the proof for Xi is symmetrical with re-
spect to m. Two cases can be considered:

• LDi ≤ Dmax

2 : By Lemma 1 the deviation above the mean and under the mean
must be equal. Hence the optimal solution is such that Xi−m+RDi = LDi.
Constraint (2) is not tight in this case.

• LDi > Dmax

2 : By Lemma 1 the constraint (1) means that the deviation
above the mean and under the mean must be equal. The conjunction of
constraint (1) with constraint (2) means that the deviation above and under
the mean are equal and at most Dmax/2. Hence the optimal solution is such
that Xi − m + RDi = Dmax

2 . Constraint (2) is tight in this case.

If both cases are considered together, equality Xi −m+RDi = min(Dmax

2 , LDi)
holds at the optimal solution. �

The filtering procedure on X applies rule (3) once on each Xi ∈ X . This can be
achieved in linear time with respect to the number of variables.

Example 4. Variables and domains considered are the same as in Example 1. The
constraint considered is DEVIATION(X = {X1, X2, X3, X4}, m = 5, D ∈ [0, 7]).

270 P. Schaus et al.

Values Xi and Xi are: X1 = min(3.5, 7)−0+5 = 8.5, X2 = min(3.5, 6)−3+5 =
5.5, X3 = min(3.5, 3) − 3 + 5 = 5, X4 = min(3.5, 5) − 3 + 5 = 5.5, X1 =
− min(3.5, 2)+1+5 = 4, X2 = − min(3.5, 5)+1+5 = 2.5, X3 = − min(3.5, 7)+
1 + 5 = 2.5 and X4 = − min(3.5, 7) + 0 + 5 = 1.5. Hence filtering rule (3) leads
to filtered domains: Dom(X1) = [8, 8], Dom(X2) = [4, 5], Dom(X3) = [3, 5] and
Dom(X4) = [3, 4].

6 Bound Consistency for DEVIATION

The total filtering is achieved in O(n) as follows.

1. Filtering from Dmax and m to X : ∀X ∈ X , Dom(X) ←− Dom(X) ∩ [X, X].
2. Filtering from X and m to D: Dom(D) ←− Dom(D) ∩ [D, D

↑
].

Even if it was possible to compute D efficiently, bound consistency is not neces-
sarily obtained. The reason is that values X , X (Definition 5) and D (Definition
3) are computed making the assumption that interval domains are defined on
rational numbers Q rather than on integers Z. As the next example shows, this
can lead to miss some possible filtering.

Example 5. Assume a set of 10 variables X with domain [0, 1] and a mean of
m = 0.5. Theorem 3 gives a value D = 0 because every domain overlaps m.
In fact the only way to obtain an assignment respecting the mean constraint
is to have five variables assigned to 0 and five to 1. For such an assignment,
the minimal sum of deviations from the mean is 5 and not 0. Consequently,
the constraint DEVIATION(X , m = 0.5, D ∈ [0, 3]) is inconsistent but such an
inconsistency will not be detected by our propagator.

Example 5 shows that all inconsistencies are not detected by the propagator.
This occurs when the mean is not an integer but a rational number and when
the domains of some variables include the mean. When the mean is an integer,
such a problem does not occur and the propagator is bound-consistent.

7 Relation Between SPREAD and DEVIATION

This section shows that DEVIATION can be used as a relaxation of SPREAD. This
relaxation might be useful since the propagator of the former runs in O(n)
against O(n2) for the latter. Furthermore, DEVIATION is easier to implement.
The relaxation is illustrated graphically and the parameters given to DEVIATION
to obtain the strongest relaxation as possible are expressed as a function of
SPREAD parameters.

SPREAD(X , m, Δ2) holds if the m value is the average over X and the sum of
square deviation to m is Δ2. More formally SPREAD holds if

∑
x∈X X = n.m and∑

x∈X (X − m)2 = Δ2.
From a geometrical point of view,

∑
x∈X (X − m)2 ≤ (Δmax)2 defines an

hyper-sphere centered on [m, ..., m] of radius Δmax. The set of points satisfying

The Deviation Constraint 271

∑
x∈X |X − m| ≤ Dmax lies on a regular polytope centered in [m, ..., m] with 2n

faces in an n-dimensional space 1.

m ,m

Dom X2

Dom X1

X1 X2 2m

Dmax

max

Fig. 2. Relation between SPREAD and DEVIATION for two variables

The idea is to relax SPREAD with deviation by finding the smallest Dmax as
possible such that the hyper-sphere is included in the polytope. For two variables
X1 and X2, Figure 2 shows that the circle can be subsumed by the tangent outer-
square. For Dmax =

√
2Δ the outer-square is tangent with the circle (Pythagore

relation). For n variables the result is described in the following theorem.

Theorem 6. SPREAD(X , m, [0, (Δmax)2])⊆DEVIATION(X , m, [0,
√

n.Δmax]) and
� (Dmax <

√
n.Δ) such that SPREAD(X , m, [0, (Δmax)2]) ⊆ DEVIATION(X , m,

[0, Dmax]).

Proof. For simplicity we assume m = 0. Recall that, the set of points such that∑
x∈X |X | ≤ Dmax define a regular polytope centered in the origin with 2n faces

in an n-dimensional space. To find Dmax such that the polyhedron is tangent
with the hyper-sphere of radius Δ, it is easier to work in the positive orthant
since others are symmetrical. In this orthant the problem is reduced to finding
Dmax such that the hyper-plan X1 + X2 + ... + Xn = Dmax is tangent with the
hyper-sphere X2

1 +X2
2 + ...+X2

n = (Δmax)2. At the tangent point we have X1 =
X2 = ... = Xn. Consequently at the tangent point X1 = X2 = ... = Xn = Δmax√

n

and hence Dmax = n√
n
Δmax. �

Note that the equality SPREAD(X , m, [0, (Δmax)2])=DEVIATION(X , m, [0,
√

n.Δ])
is valid only when n = 2 (two variables). For three variables or more the strict in-
clusion holds. For instance, the tuple t = 〈X1 =

√
3

2 Δmax, X2 = −
√

3
2 Δmax, X3 =

0〉 ∈ DEVIATION(X , m = 0, [0,
√

3.Δmax]) but t /∈ SPREAD(X , m = 0, [0, (Δmax)2]).

Indeed,
(√

3
2 Δmax

)2
+

(√
3

2 Δmax
)2

+ 02 = 3
2 (Δmax)2 > (Δmax)2.

1 For n = 2 it is a square and for n = 3 it is an octahedron.

272 P. Schaus et al.

8 Experimental Results

The goal of this experiment is to compare the filtering of the DEVIATION propa-
gators described in Section 4 and 5, with an implementation by decomposition
as suggested in Section 3.

20, 000 sets X = {X1, ..., X50} were generated. The domain of one variable X
are all the integer values between the minimum and maximum of a generated pair
of two uniform random integer values between -50 and 50. The mean constraint
on each set is m = 0.5. The maximum sum of deviations Dmax varies between
200 and 1000. This interval was found experimentally such that for Dmax = 200
(resp. 1000) all the sets are inconsistent (resp. consistent).

Statistics at the root node (no search was employed) are depicted on Figure 3.
The number of inconsistent sets detected by both approaches are given on the left
of Figure 3. Note that if an example is detected as inconsistent by decomposition,
DEVIATION also detects it. The average percentage of filtering (i.e. the number
of filtered values divided by the number of initial values in the domains) on
consistent sets are plotted on the right of Figure 3.

The number of inconsistent sets detected is significantly larger with the pre-
sented propagator than with an implementation by decomposition. For instance,
with Dmax = 500, DEVIATION detects 9, 619 inconsistencies against 3, 628 with
the decomposition. On the 10, 381 consistent sets, the pruning percentage ob-
tained with DEVIATION is 11.8% against 0.9% with decomposition.

As shown in Section 6, all inconsistencies are not detected by our propagator
if the mean is not integer. Since m = 0.5, some inconsistent sets can be unde-
tected. Figure 4 shows a plot of the percentage of inconsistencies detected by
decomposition and DEVIATION approaches. Almost all inconsistencies are de-
tected by DEVIATION. The lowest percentage is 99.66% for Dmax = 400.

Section 7 introduces an approximation of SPREAD with DEVIATION. The left
of Figure 5 shows the number of inconsistencies detected by SPREAD (as im-
plemented in [7]) compared with the number of inconsistencies found by the
approximation. Many inconsistencies remain undetected but, as shown on the

Fig. 3. Experimental Results: DEVIATION v.s. decomposition of Section 3

The Deviation Constraint 273

Fig. 4. Percentage of detected inconsistencies

Fig. 5. Experimental Results: SPREAD v.s. approximation with DEVIATION

left of Figure 5, the propagation using DEVIATION is two orders of magnitude
faster than with SPREAD on these 20.000 random instances.

9 Conclusion

This work presents DEVIATION, a new global constraint to balance a set of vari-
ables. This constraint is closely related to the SPREAD constraint [5,7]. While
SPREAD constrains the L2 norm to the mean, DEVIATION constrains the L1 norm.

The filtering algorithms we introduce run in linear time with respect to the
number of variables. Experiments evaluate the efficiency in terms of filtering of
our propagators. A relaxation of SPREADwith DEVIATION is also introduced. Such
a relaxation offers less filtering but significantly reduces the computation time.

Acknowledgment

The authors wish to thank Julien Hendrickx and Raphaël Jungers for their
proof of Theorem 4 and also Jean-Noël Monette and Grégoire Dooms for various
interesting discussions.

This research is supported by the Walloon Region, project Transmaze (516207).

274 P. Schaus et al.

References

1. Problem 30 of CSPLIB (www.csplib.org).
2. C. Castro and S. Manzano. Variable and value ordering when solving balanced

academic curriculum problem. Proc. of the ERCIM WG on constraints, 2001.
3. M. R. Garey and David S. Johnson. Computer and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.
4. Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Modelling a balanced academic

curriculum problem. Proceedings of CP-AI-OR-2002, 2002.
5. G. Pesant and J.C. Régin. Spread: A balancing constraint based on statistics.

Lecture Notes in Computer Science, 3709:460–474, 2005.
6. J.C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An original constraint based

approach for solving over constrained problems. Sixth International Conference on
Principles and Practice of Constraint Programming (CP 2000), 1894, 2000.

7. P. Schaus, Y. Deville, P. Dupont, and J.C. Régin. Simplication and extension of the
spread constraint. Third International Workshop on Constraint Propagation And
Implementation, 2006.

8. W.J. van Hoeve, G. Pesant, L.M. Rousseau, and A. Sabharwal. Revisiting the
sequence constraint. Twelfth International Conference on Principles and Practice
of Constraint Programming (CP 2006), 4204, 2006.

The Linear Programming Polytope of
Binary Constraint Problems with

Bounded Tree-Width

Meinolf Sellmann, Luc Mercier, and Daniel H. Leventhal

Brown University
Department of Computer Science

115 Waterman Street, P.O. Box 1910
Providence, RI 02912

sello,mercier@cs.brown.edu

Abstract. We show how to efficiently model binary constraint problems (BCP)
as integer programs. After considering tree-structured BCPs first, we show that
a Sherali-Adams-like procedure results in a polynomial-size linear programming
description of the convex hull of all integer feasible solutions when the BCP that
is given has bounded tree-width.

Keywords: constraint programming, integer programming, polyhedral combina-
torics, cutting planes.

1 Introduction

When solving combinatorial problems, all competitive state-of-the-art solvers combine
search with inference. Integer programming (IP) solvers like XpressMP or Cplex base
inference on tight continuous linear programming (LP) relaxations. Satisfiability (SAT)
solvers perform unit propagation and no-good learning. And constraint programming
(CP) solvers make excessive use of constraint filtering techniques. The efficiency, i.e.
the effectiveness over CPU-time, is the decisive performance measure for inference
algorithms that are used within search.

In IP, effectiveness is best characterized by the gap between the value of the opti-
mal solution and the bound that results from the continuous relaxation of the problem.
For certain problems, we find that there is no gap at all. This is the case, for example,
when the constraint matrix is totally unimodular and the right hand side vector is in-
teger. In this case, the strength of the inference algorithm alone allows us to solve the
corresponding problem in polynomial time.

Interestingly, such islands of tractability are not always found by the analysis of in-
ference algorithms. For certain problems, we can also devise ways how to search more
efficiently. This is for example the case when we solve a problem by means of dynamic
programming. Another example are search algorithms that exploit problem decompos-
ability, such as polynomial-time algorithms for problems on graphs with bounded tree-
width [15]. A recent heuristic algorithm that exploits structure to speed-up search is
given in [12].

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 275–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

276 M. Sellmann, L. Mercier, and D.H. Leventhal

For practical reasons, a perfect inference algorithm is preferable over a specialized
search routine. Consider for example the case where we hit an island of tractability as a
subproblem within a general search. An inference algorithm automatically takes advan-
tage of it, while a specialized search routine could only be invoked when the necessary
conditions for its efficient application are detected. Moreover, consider the case where
an IP has just a few additional constraints that compromise problem decomposability,
thus preventing a specialized search algorithm from being applicable. Then, a tight de-
scription of the polytope that the majority of the constraints define still helps to tighten
the LP/IP gap.

Consequently, researchers are interested in describing or at least approximating the
convex hull of tractable problems. A recent example for such work is [3]. Given that
Knapsack problems can be approximated efficiently, Vyve and Wolsey [17] had raised
the question whether, for all ε > 0, the Knapsack polytope over n items can be approx-
imated by at most a polynomial number (in n and 1/ε) of cuts so that the LP relaxation
value does not over-estimate the optimal IP value by more than a factor of 1+ε. This
could be viewed as the mathematical programming analogue of a fully polynomial ap-
proximation scheme (FPTAS) for the Knapsack polytope. Bienstock provides the ana-
logue of a polynomial approximation scheme (PTAS) by giving a lifted formulation of
the Knapsack polytope with O(n1+�1/ε�/ε) variables and O(n2+�1/ε�/ε) constraints.

In this paper, we study the polytope of tree-structured binary constraint networks. It
is well known that these problems can be solved in polynomial time by a specialized
search based on problem decomposition. We bring this result to the realm of inference
by providing a perfect characterization of the corresponding polytope. Particularly, we
show that a certain set of linear constraints leads to continuous relaxations with no
LP/IP gap. By introducing Sherali-Adams-like variables, we then generalize the result
to problems with bounded tree-width.

2 Binary Constraint Satisfaction

We start our study by defining binary constraint satisfaction problems.

Definition 1 (Binary Constraint Satisfaction Problem)

– A binary constraint problem (BCP) is a triplet 〈V, D, C〉, where V ={X1, . . . , Xn}
denotes the finite set of variables, D = {D1, . . . , Dn} denotes a set of n finite sets
of possible values for these variables (Di is called the domain of variables Xi),
and C = {C1, . . . , Cm} is the set of constraints, where Cj : Dj1 × Dj2 → Bool
specifies which simultaneous assignments of values to the variables Xj1 and Xj2

are allowed. The set {Xj1 , Xj2} is called the scope of constraint Cj .
– An assignment for a BCP P = 〈V, D, C〉 is a function σ : V →

⋃
i≤n Di. A

solution to a BCP P = 〈V, D, C〉 is an assignment σ such that σ(Xi) ∈ Di for all
1 ≤ i ≤ n and such that Cj(σ(Xj1), σ(Xj2)) = true for all 1 ≤ j ≤ m. The set
of all solutions to a BCP P is denoted by Sol(P).

Note how, in contrast to the custom in integer programming, in CP the term “binary” is
used to express that all constraints affect just two variables, while the size of the domain

The Linear Programming Polytope of Binary Constraint Problems 277

of each variable is not limited! The fact that the arity of the constraints is limited to two
allows us to state constraints simply as sets of allowed pairs Rj1,j2 = {(k, l) | Xj1 =
k, Xj2 = l ok}, or, alternatively, as sets of forbidden pairs Rj1,j2 = {(k, l) | Xj1 =
k, Xj2 = l forbidden}.

It is easy to see that the general BCP is NP-hard. One simple way is to reduce from
graph coloring where each node is modeled as a variable that must be assigned a color
such that adjacent nodes are not colored identically (i.e., the corresponding constraint
on each edge {i, j} is a not-equal constraint Ri,j = {(k, k) | ∀ k}). Conversely, every
binary constraint problem can be visualized as a constraint network where each node
corresponds to a variable and an edge connects two nodes iff there exists a constraint
over the corresponding variables. Of course, the exact semantic of the constraints is lost
in that visualization. However, it is a well-known fact that any BCP whose correspond-
ing constraint network is a tree can be solved in polynomial time. Even more generally,
a BCP is already tractable when its constraint network has bounded tree-width [6,7].

In the following, we consider ways to express BCPs by means of linear constraints.
We will review a recently introduced IP model for BCPs and show that, for tree-
structured BCPs, the model gives a perfect representation of the convex hull of all
integer feasible solutions.

3 The Support Formulation

When designing constraints for a model, humans tend to think in terms of “what is for-
bidden.” For BCPs, this leads to the common IP formulation in which we consider each
constraint truth table over variables Xi and Xj and add an IP constraint yik + yjl ≤ 1
for each inconsistent pair (k, l) ∈ Ri,j , where ypq ∈ {0, 1} is one iff Xp = q in the
solution to the BCP. Since each variable must take exactly one value, we also add con-
straints

∑
k yik = 1 for all 1 ≤ i ≤ n. When the task is constraint optimization rather

than constraint satisfaction as in CP, we are also given a linear objective function. The
complete IP then reads:

Traditional IP model (TIP)

max
�

pikyik

s.t. yj1k + yj2l ≤ 1 ∀ 1 ≤ j ≤ m, (k, l) ∈ Rj1,j2 (1)
�

k∈Di

yik = 1 ∀ i ∈ {1, . . . , n} (2)

yik ∈ {0, 1} ∀ i ∈ {1, . . . , n}, k ∈ Di (3)

In [2], we provided a different way of formulating a BCP as an IP by focussing on the
allowed pairs in each constraint truth table. In essence, we use the linear constraints to
specify that, when a variable Xj1 takes value k, variable Xj2 must take a value that
is consistent with Xj1 = k. In that way, we enforce that each variable assignment is
supported by a correct assignment to adjacent variables (by which we mean variables
that share a constraint). The IP then reads:1

1 Whereby, for simplicity in constraints (4), we assume that each constraint over variables i, j
induces two truth tables Ri,j and Rj,i.

278 M. Sellmann, L. Mercier, and D.H. Leventhal

Support IP model (SIP)

max
�

pikyik

s.t. yj1k −
�

l:(k,l)∈Rj1,j2

yj2l ≤ 0 ∀ 1 ≤ j ≤ m, k ∈ Dj1 (4)

�

k∈Di

yik = 1 ∀ i ∈ {1, . . . , n} (5)

yik ∈ {0, 1} ∀ i ∈ {1, . . . , n}, k ∈ Di (6)

The fact that support encodings can lead to strong inference algorithms is not new.
In [10,8], for example, it was shown that formulating a BCP as a SAT formula in this
way has preferable propagation properties. In [2], we showed that the support IP for-
mulation leads to stronger linear continuous relaxations than the Lagrangian relaxation
proposed in [11]. Specifically, we showed that the support encoding of the Lagrangian
subproblem studied in [2] is totally unimodular. Unfortunately, this property does not
hold for the entire IP, even when the corresponding BCP has just two variables (con-
sider for example the case of a two node/one edge graph coloring problem with three
colors.) Despite this problem, we will now show that the linear continuous relaxation
SLP of SIP (which is given by SIP when replacing integrality constraints (6) with
simple constraints on the bounds of the variables; in our case, the upper bounds are
redundant and are therefore left out) provides a perfect characterization of the convex
hull of all integer feasible solutions.

4 Tree-Structured Binary Constraint Programs

We state our result as follows:

Theorem 1. If the BCP that is given has a tree-structured constraint network, then the
programs SIP and SLP have the same value.

Proof. Assume we are given a (potentially fractional) solution to SLP (if there is no
solution then the corresponding BCP is obviously infeasible, too). Denote this solution
by y0

ik with 1 ≤ i ≤ n and k ∈ Di. Now consider the following sets: D0
i := {k | y0

ik >
0} ⊆ Di. We make two important observations:

(a) First, none of the sets D0
i is empty.

(b) And second, for each 1 ≤ j ≤ m and each value k ∈ D0
j1

, there exists a value
l ∈ D0

j2 such that setting Xj1 = k and Xj2 = l is allowed. Analogously, for each
1 ≤ j ≤ m and each value l ∈ D0

j2 , there exists a value k ∈ D0
j1 such that setting

Xj1 = k and Xj2 = l is allowed.

The first is a simple consequence of constraints (5), the latter follows from constraints (4)
which enforce that at least one non-conflicting value must still be present in the adjacent
variable’s domain:

0 < yj1k ≤
∑

l:(k,l)∈Rj1 ,j2

yj2l.

The Linear Programming Polytope of Binary Constraint Problems 279

The second property is known in CP as arc-consistency. Basically, arc-consistency just
states that each value in a variable’s domain has supporting values in each of the do-
mains of adjacent variables. It is a well-known fact that a tree-structured BCP has a
solution if properties (a) and (b) hold for the domains of the variables. This is easy to
verify: Assume that the BCP that is given is arc-consistent. Take any variable and assign
to it any value in its domain. Shrink the domains in the remaining BCP by removing
all values without support until it is arc-consistent again. Since, for each value in each
domain, there exists at least one supporting value in the domains of adjacent variables,
no domain can be empty now. So we have properties (a) and (b) again, and we repeat.
After at most n such steps all domains have become singletons and we can read out the
integer feasible solution y1.

Therefore, when we artificially shrink the domains of the variables in the given tree-
structured BCP by replacing Di with D0

i , then the remaining constraint problem is still
solvable.

It remains to show that any solution to the reduced BCP where each variable Xi

takes a value in D0
i has the same objective value as our fractional solution. For this

purpose, consider the dual optimal solution with variables πjk ≥ 0 for constraints (4)
(and unsigned variables μi for constraints (5) that we will not use). Consider the relaxed
problem where we soften constraints (4) and penalize their violation in the objective
with the help of Lagrange multipliers π:

max
�

pikyik −
�

j,k∈Dj

πjkyjk +
�

j1

�

(k,l)∈Rj1,j2

πjkyj2l

s.t.
�

k∈Di

yik = 1 ∀ i ∈ {1, . . . , n}

yik ∈ {0, 1} ∀ i ∈ {1, . . . , n}, k ∈ Di

which can be simplified to

Relaxed IP model (RIP (π))

max
�

s≤n,t∈Ds

pst yst

s.t.
�

k∈Di

yik = 1 ∀ i ∈ {1, . . . , n} (7)

yik ∈ {0, 1} ∀ i ∈ {1, . . . , n}, k ∈ Di (8)

when setting pst := pst −
∑

j1=s πjt +
∑

j2=s,∃ u: (u,t)∈Rj1,j2
πjt. From the theory of

Lagrangian relaxation we then know the following facts [1,14]:

– The Lagrangian subproblem exhibits the integrality property. Therefore, with opti-
mal dual multipliers π, the optimal value of RIP (π), RLP (π), and SLP are all the
same.

– Then, the optimal fractional solution y0 to SLP is also optimal for RLP (π). Conse-
quently, because of constraints (7), for all 1 ≤ i ≤ n, it holds that pik = pil for all

280 M. Sellmann, L. Mercier, and D.H. Leventhal

k, l ∈ {t | y0
it > 0}. That is, all domain values of variable i that received positive

weight have the same reduced costs pik.

Thus, our integer solution y1 to SIP for which y1
ik = 1 implies k ∈ D0

i is feasible
and optimal for RIP (π). And so, y1 has the same objective value as y0. Thus, for
each fractional optimal solution there exists an integer optimal solution with the same
objective value.
�

Since Theorem 1 applies regardless of the objective function, what we have really
shown is that the polytope described by SLP is exactly the convex hull of the feasible
solutions to SIP . Note that there are certainly other ways to prove this result. However,
this is the only proof we know which reveals a connection between the CP variable
domains and the support (i.e. the set of those LP variables variables that have positive
weight) of the LP relaxation.

So we can efficiently describe the convex hull of IPs modeling tree-structured BCPs.
Since tree-structured problems are known to be polynomial-time solvable, this is not re-
ally surprising. However, the characterization of the convex hull has several advantages
over specialized search procedures:

– In many cases, binary constraints constitute only a part of the constraint structure.
Specialized search procedures that work for the BCP part do not generalize to the
problem at hand. However, the tight description of the polytope of feasible solutions
can still be exploited in a branch-and-bound procedure.

– Assume that the overall problem is not tree-structured, but becomes tree-structured
after a couple of branching decisions. In practice, we do not want to put large over-
head into the recognition of special cases that can be solved by a specialized search
routine. When using the support formulation, special recognition is not necessary
- the relaxation will automatically come out integer when using the simplex algo-
rithm to solve the linear relaxation.

5 Exploiting Bounded Tree-Width

Obviously, we would like to generalize our results to BCPs with bounded tree-width
which are also known to be polynomial-time tractable. We do this in two steps: First,
we propose a set of constraints that define the convex hull of a BCP with bounded tree-
width k when a tree-decomposition is known. In the second step, we then show how to
achieve a perfect bound when the decomposition is not known.

Definition 2. An undirected graph G = (N, A) has tree-width k, iff there is a pair
(S, T), where S = {S1, . . . , Sp} is a family of subsets of N , and T is a tree whose
nodes are the subsets Si, such that:

–
⋃

i Si = N ,
– for every edge {v, w} ∈ A, there is a node Si that contains both v and w,
– if Si and Sj both contain a vertex v, then all nodes Sz of the tree in the (unique)

path between Si and Sj contain v, and
– the size of all sets Si is limited by k + 1, i.e., |Si| ≤ k + 1 for all i.

The Linear Programming Polytope of Binary Constraint Problems 281

A BCP has bounded tree-width k when its constraint network has tree-width k.

It is known that a BCP with bounded tree-width k can be transformed into a tree-
structured BCP that contains the original variables as well as some additional auxiliary
variables such that the size of the new BCP is polynomial in the original size (and
exponential in the constant k). We can compute this new BCP by exploiting the tree-
decomposition of the given problem. Note that, while computing the minimal tree-width
of a graph is NP-hard, for fixed k we can efficiently check whether a graph has tree-
width k and compute a corresponding tree-decomposition in linear time [5].

The construction of the new BCP is simple: the variables are the old variables
X1, . . . , Xn plus new variables Y1, . . . , Yp, one for each set Si = {Xi1 , . . . , Xiq(i)}
in the tree-decomposition (whereby 1 ≤ q(i) ≤ k + 1). The domain of variable Yi are
all tuples (t1, . . . , tq(i)) ∈ Di1 × · · · × Diq(i) that are consistent with all binary con-
straints over any two variables in Si. The domains of the old variables are the same as
before. Now, we add two sets of binary constraints to the problem:

– For each variable Xj there exists a set Si such that Xj ∈ Si. For one such set (ties
can be broken arbitrarily), we add a constraint over Xj and Yi that enforces that the
value of Xj and the corresponding entry in the tuple assigned to Yi are the same.

– For each pair of variables Yh, Yi such that Sh ∩ Si = ∅, we add a constraint that
enforces that entries in the corresponding tuples that are associated with the same
variable(s) Xj are identical.

Note how the restrictions that apply to a valid tree-decomposition ensure that the new
BCP is connected, cycle-free, and polynomial in the size of the original problem when
k is viewed as a constant. Most importantly, a valid tree-decomposition ensures that a
solution to the original problem has a corresponding solution in the new BCP and vice
versa: Given a solution σ to the original problem, we achieve a solution to the new
one simply by assigning the same values to the old variables as before and by assign-
ing the corresponding consistent tuples to the variables Yi. Since σ obeys all original
constraints, each such tuple is a member in the domain of Yi. Conversely, assume we
are given a solution τ to the new problem. Note that, for all Xj , the variables Yi with
Xj ∈ Si and Xj are all connected. Consequently, all tuples assigned to variables Yi

and the assignment to Xj agree on the value of Xj . Also, for each original constraint
Cj on variables Xj1 , Xj2 there is at least one Yi such that Xj1 , Xj2 ∈ Si. Therefore, τ
assigns a consistent pair of values to Xj1 and Xj2 . Consequently, when projecting τ on
variables Xj , we achieve a feasible solution to the original problem.

Now, all that we need to do is formulate the new, tree-structured BCP by exploiting
the support formulation as outlined in Section 3. Then, all extreme points of the new
polytope give integer feasible solutions that are consistent with the original problem. It
follows:

Theorem 2. Given a constant k, any BCP with bounded tree-width k can be expressed
as an integer program that exhibits the integrality property and which size is polynomial
in the size of the given problem.

Note that our formulation still contains all original variables which makes it easy to add
the objective to the problem and which also allows us to augment the problem by adding

282 M. Sellmann, L. Mercier, and D.H. Leventhal

additional constraints on those original variables. Obviously, any additional constraints
will, in general, compromise the integrality property of the feasible polytope. However,
with the tight characterization of the convex hull of all solutions feasible for the BCP
we can hope for a small LP/IP gap.

Now, in some cases we would prefer if we did not need to know the exact tree-
decomposition of our problem. For example, it would be desirable if, during a branch-
and-bound search, inference on a sub-problem encountered during search would simply
turn out perfect whenever the sub-problem has bounded tree-width k, without the need
of applying a special recognition algorithm for all sub-problems. That is, rather than
analyzing a problem, determining its tree-width, and then choosing the formulation, it
would be nicer if we could simply fix the parameter k (as an algorithm design choice)
and then be sure that all subproblems of width lower than k that we may ever encounter
will be solved perfectly by our inference algorithm. Fortunately, this can be achieved!

First, the following simple claim allows us to restrict our attention to a certain class
of tree decompositions, that we call saturated.

Lemma 1. Let G = (N, A) be an undirected graph of tree-width less than or equal to
k, with |N | > k. There exists a tree decomposition (S, T) of G such that |s| = k + 1
for all s ∈ S.

Proof. First, we may assume there is no edge {Si, Sj} ∈ T such that Si ⊆ Sj since we
can get a new tree decomposition (S′, T ′) by contracting this edge and keeping only
Sj . Now, if |S| = 1, then the tree consists in one node containing all k + 1 elements of
N . So assume |S| > 1, and there is Si ∈ S such that |Si| ≤ k. Let Sj be adjacent to Si.
Since there exists p ∈ Sj \ Si, we can augment the cardinality of Si by adding p which
gives a new valid tree-decomposition. By repetition, we achieve a decomposition where
all nodes have cardinality k + 1.
�

Now, we formulate a new BCP whose solutions closely correspond to solutions in the
original problem. The construction is very easy: We add all original variables Xj to our
problem, keeping their domains as before. Additionally, for each subset of exactly k+1
variables {Xs1 , . . . , Xsk+1}, we introduce a variable Ys1,...,sk+1 . The domains of these
variables are limited to tuples (t1, . . . , tk+1) ∈ Ds1 ×· · ·×Dsk+1 which are consistent
with all binary constraints over variables Xj1 , Xj2 with j1, j2 ∈ {s1, . . . , sk+1}. We
add the same binary constraints on the auxiliary variables as we did when the tree-
decomposition was known. The original variables Xj are tied to our problem by adding
a constraint between Xj and each variable Ys1,...,sk+1 with j = sr for some 1 ≤ r ≤
k + 1, enforcing that the value assigned to Xj is the same as the entry with index sr of
the tuple assigned to Ys1,...,sk+1 .

Let us denote the BCP that emerges in this way from a BCP P by T k(P). Clearly,
T k(P) is not tree structured at all. However, it holds:

Theorem 3. Given a constant k and a BCP P with tree-width lower or equal k, the
support encoding of T k(P) as an integer program is polynomial in the size of Pand it
has the same value as its linear continuous relaxation.

Proof. We consider the following integer programs and their linear continuous relax-
ations: IPT , the integer programming formulation based on the saturated tree-

The Linear Programming Polytope of Binary Constraint Problems 283

decomposition from Theorem 2; LPT , the linear continuous relaxation of IPT ; IPF ,
the support encoding of T k(P) as an integer program; and LPF , the linear continuous
relaxation of the latter. By abuse of language, we identify the optimal value of the ob-
jective with the name of a problem. According to Theorem 1, it holds that IPT = LPT .
Furthermore, we observe that LPF is, in some sense, a lifted version of LPT : LPF

operates on a super-set of variables of LPT , but extra variables present in LPF yield no
additional profit in the objective function, and all original constraints are still present.
Consequently, LPF just contains some extra constraints, and it holds LPT ≥ LPF . The
same relation also holds for IPF and IPT . However, since all extra constraints present
in IPF are redundant for any integer solution in IPT , we even have that IPF = IPT .
But then: LPT ≥ LPF ≥ IPF = IPT = LPT . And thus, LPF = IPF .
�

It is interesting to observe the analogies of our method to the work from Bienstock and
Ozbay in [4]. They show that the polytope of packing problems whose matrices have a
clique-graph with bounded tree-width can be described perfectly by adding a polyno-
mial number (exponential in the tree-width) of Sherali-Adams variables and cuts [16].
This work does not apply directly to the matrices that we encounter (even when we
ignore negative matrix entries, note that the size of BCP domains is usually in the same
order as the number of variables which causes the clique-graphs to have large tree-
width). However, it is interesting to see that in both their work and in our approach the
introduction of variables that model subsets of the original variables leads to the desired
result.

6 Numerical Results for Augmented BCPs with a Linear Objective

In [2], we showed that LP-inference is not worthwhile for pure BCPs. Here, we will
experiment with BCPs that are augmented by some linear constraints and a linear ob-
jective function. For this purpose, we consider the following multi-knapsack problem:
Given m knapsacks with capacities C1, . . . , Cm and n items with knapsack-dependent
weights w1,1, . . . , wm,n ≥ 0, we have to place each item in exactly one knapsack such
that the sum of the weights of the items placed in each knapsack does not exceed its
capacity. Items achieve knapsack-dependent profits p1,1, . . . , pm,n ≥ 0, and we try to
maximize the total profit

∑m
k=1

∑
i placed in k pk,i. We augment this problem by adding

binary constraints that each forbid some specific simultaneous placements of two items.
For instance, a constraint over items i and j could require that i and j cannot be placed
in the same bin. Or that they must be placed in the same bin. Or generally, that placing
item i in knapsack k1 and placing item j in knapsack k2 is not allowed for a set of tuples
(k1, k2). For our experiments, we compare the following models.

(CP) : max
�n

i=1 pxi,i

(1)
�

i≤n, xi=k wk,i ≤ Ck ∀ 1 ≤ k ≤ m

(2) Fp(xp1 , xp2) = true ∀ 1 ≤ p ≤ q
(3) xi ∈ {1, . . . , m} ∀ 1 ≤ i ≤ n

where F1, . . . , Fq denote the binary constraints and constraint Fp limits the simultaneous
placement of items p1 and p2. The next model is based on the traditional LP formulation:

284 M. Sellmann, L. Mercier, and D.H. Leventhal

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

Se
co

nd
s

Constraints

ILOG Solver
LP-S Filter

Fig. 1. Comparison of the average time [sec, log-scale] over 100 random instances to solve 5-
knapsack instances with 12 items and varying number of binary constraints with a pure CP ap-
proach (Ilog Solver) and our LP-filtering approach with support formulation.

(LPT) :
�m

k=1

�n
i=1 pk,i yk,i

(1)
�

i≤n wk,i yk,i ≤ Ck ∀ 1 ≤ k ≤ m

(2) yk,p1 + yl,p2 ≤ 1 ∀ 1 ≤ p ≤ q, Fp(k, l) = false
(3)

�
k yk,i = 1 ∀ 1 ≤ i ≤ n

(4) yk,i ∈ {0, 1} ∀ 1 ≤ k ≤ m, 1 ≤ i ≤ n

Our last model is based on the support LP formulation:

(LPS) :
�m

k=1

�n
i=1 pk,i yk,i

(1)
�

i≤n wk,i yk,i ≤ Ck ∀ 1 ≤ k ≤ m

(2a) yk,p1 ≤
�

l | Fp(k,l)=true yl,p2 ∀ 1 ≤ p ≤ q, 1 ≤ k ≤ m

(2b) yl,p2 ≤
�

k | Fp(k,l)=true yk,p1 ∀ 1 ≤ p ≤ q, 1 ≤ l ≤ m

(3)
�

k yk,i = 1 ∀ 1 ≤ i ≤ n
(4) Yk,i ∈ {0, 1} ∀ 1 ≤ k ≤ m, 1 ≤ i ≤ n

In combination with the latter two models, we use two different methods for exploiting
the corresponding LP relaxation. The first is called LP-pruning which uses it for pruning
purposes(i.e. theearlyterminationofsearch)only.Thesecondisinspiredby[11]andcalled
LP-filtering: after computing the LP-solution to the problem, it chooses those assignments
Xi = k for which the continuous value of yik is lower than some threshold value ε >
0. Then, for each of the selected assignments, it sets up a new LP with the objective to
maximize yik. If the relaxation gives a value lower than 1, k can be removed from Di.

We generate random instances for given parameters m, n, and q by drawing weights
wk,i uniformly at random between 1 and 100. Knapsack capacities are then set to Ck :=
2
�

i wk,i

m . The profits pk,i were weakly correlated with the weights by drawing them
uniformly at random in the intervals [wk,i−5, wk,i+5]. Binary constraints are generated
randomly, whereby the number of allowed pairs of each constraint is set to m2/2.

Figure 1 shows a comparison of a pure CP approach and our LP-filtering approach
for random 5-knapsack instances with 12 items. We can see clearly how essential the
use of a global bound is: even on this toy-example, in the low-constrained region solver
needs, on average, more than 35 seconds while the LP-filtering approach takes less than

The Linear Programming Polytope of Binary Constraint Problems 285

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

C
ho

ic
e

Po
in

ts

Constraints

LP-S Prune
LP-T Prune
LP-S Filter
LP-T Filter

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30 35 40 45 50 55

C
ho

ic
e

Po
in

ts

Constraints

LP-T Prune
LP-S Prune
LP-T Filter
LP-S Filter

Fig. 2. Comparison of the average number of choice points over 100 random instances to solve
5-knapsack instances with 12 and 16 items and varying number of binary constraints

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

Se
co

nd
s

Constraints

LP-S Prune
LP-T Prune
LP-S Filter
LP-T Filter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40 45 50 55

Se
co

nd
s

Constraints

LP-S Prune
LP-T Prune
LP-S Filter
LP-T Filter

Fig. 3. Comparison of the average time over 100 random instances needed to solve 5-knapsack
instances with 12 and 16 items and varying number of binary constraints

half a second. We also started runs on instances with 16 items, but the pure CP-approach
took so much time that we had to cancel the experiment.

Regarding the effect of the support model and the traditional formulation of the bi-
nary constraints, in Figure 2 we compare the number of choice points visited by LP-
pruning and filtering when based on the support or traditional formulation. We observe
what was to be expected: LP filtering visits fewer choice points than LP-pruning, and
for both pruning and filtering, the support formulation is stronger and results in smaller
search trees than the traditional one.

Of course, LP-filtering incurs larger computational costs per choicepoint than LP-
pruning. Whether or not the additional time needed to perform stronger inference will
in general depend on the application. Figure 3 shows that LP-based filtering beats the
approach that uses the LP-bound for pruning only. We observe that, on small multi-
knapsack instances, using the support formulation does not pay off. This can be at-
tributed to the fact that the traditional formulation leads to much sparser matrices and
can therefore be solved much faster, which makes up for slightly worse relaxation val-
ues. Of course, as problem sizes and search spaces grow, the use of a stronger bound
becomes more and more attractive as the larger costs per choice point can be paid for by

286 M. Sellmann, L. Mercier, and D.H. Leventhal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

Se
co

nd
s

Constraints

LP-T Prune
LP-S Prune
LP-T Filter
LP-S Filter

Fig. 4. Comparison of the average time over 100 random instances to solve 5-knapsack instances
with 40 items and varying number of binary constraints

a much larger reduction in search costs. Consequently, in Figure 4, we see that already
on moderately larger problem instances filtering based on the support LP-formulation
becomes the method of choice.

7 Summary and Future Work

We have shown how to efficiently transform binary constraint problems into linear pro-
grams whose extreme points are integer whenever the tree-width of the initial BCP is
bounded by some constant k.

Some questions remain open. When making the step from tree-structured BCPs to
those with tree-width 2, the exponent in the number of CP variables jumps from 1 to 3.
Can the exponents be controlled better than we did it here? Are there efficient ways
to generate constraints in a lazy fashion, adding them only when the linear relaxation
turns out to be fractional? What about linear programming polytopes of other islands of
tractability, such as Horn formulas?

Moreover, our approach motivates a procedure for lifting arbitrary binary integer
programs {x ∈ {0, 1}n | Ax ≤ b} that would be interesting to compare with the
Sherali-Adams procedure.2 To simplify the notation, all sets considered in the following
are subsets of {1, . . . , n}, and we write X + Y for the union of sets X, Y that are
disjoint. At level k ≥ 1, to the original problem we add variables w(Y, N) ≥ 0 for all
|Y + N | = k (with the idea that xj = 1 for all j ∈ Y and xh = 0 for all h ∈ N).
Moreover, we add the following sets of constraints:

–
∑

Y +N=S w(Y, N) = 1 for all |S| = k.
– w(Y, N) ≤ xj and w(Y, N) ≤ xh for all |Y + N | = k, j ∈ Y , h ∈ N .
– xj ≤

∑
Y +N=S, j∈Y w(Y, N) and 1−xj ≤

∑
Y +N=S, j∈N w(Y, N) for all |S| =

k, j ∈ S.

2 Whereby it is important to state explicitly that the lifting procedure that we sketch here, due to
potentially large CP variable domains, would not have given the desired results when applied
to SIP . We really needed to exploit the original structure of the given BCP with bounded
tree-width to achieve a good IP model.

The Linear Programming Polytope of Binary Constraint Problems 287

– w(X + Y, M + N) ≤
∑

Z+O=S w(X + Z, M + O) for all 1 ≤ |X + M | < k,
|S| = |Y + N |, S ∩ (Y + N) = ∅, and |X + Y + M + N | = k.

– (
∑

j∈Y aij +
∑

j /∈Y +N, aij<0 aij − bi)w(Y, N) ≤ 0 for all |Y + N | = k.

Note that the variables that we add are semantically the same as the ones that are added
by Sherali and Adams. However, the way we post the constraints is quite different so
that it suffices to add variables for subsets of size equal to k only. As the results in this
paper show, at level n, this lifting method gives a formulation that has integer extreme
points only.

References

1. R.K. Ahuja, T.L. Magnati, J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. I.D. Aron, D.H. Leventhal, M. Sellmann. A Totally Unimodular Description of the Consistent

Value Polytope for Binary Constraint Programming. CPAIOR, LNCS 3990:16–28, 2006.
3. D. Bienstock. Approximate formulations for 0-1 knapsack sets. CORC Report TR-2006-03,

Columbia University, 2006.
4. D. Bienstock and N. Ozbay. Tree-width and the Sherali-Adams operator.

citeseer.ist.psu.edu/bienstock03treewidth.html, 2003.
5. H.L. Bodlaender. A Linear Time Algorithm for Finding Tree-decompositions of Small

Treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.
6. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence,

38:353–366, 1989.
7. E.C. Freuder. Complexity of k-tree structured constraint satisfaction problems. AAAI, pp. 4–

9, 1990.
8. I.P. Gent. Arc Consistency in SAT. ECAI, pp. 121–125, 2002.
9. J.N. Hooker. A hybrid method for planning and scheduling. CP, LNCS 3258:305–316, 2004.

10. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artificial Intelligence, 45:275–286, 1990.

11. M.O.I. Khemmoudj, H. Bennaceur, A. Nagih. Combining Arc-Consistency and Dual La-
grangean Relaxation for Filtering CSPs. CPAIOR, LNCS 3524:258–272, 2005.

12. R. Marinescu and R. Dechter. AND/OR Branch-and-Bound Search for 0-1 Integer Linear
Programming. CPAIOR, LNCS 3990:152–166, 2006.

13. M. Milano. Integration of Mathematical Programming and Constraint Programming for
Combinatorial Optimization Problems, Tutorial at CP, 2000.

14. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.
15. N. Robertson and P.D. Seymour. Graph minors - Algorithmic aspects of treewidth. Algo-

rithms, 7:309–322, 1986.
16. H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and con-

vex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3:411–430, 1990.

17. M. Van Vyve, L.A. Wolsey. Approximate extended formulations. Mathematical Program-
ming, 105(2–3):501–522, 2006.

On Boolean Functions Encodable as a Single

Linear Pseudo-Boolean Constraint

Jan-Georg Smaus

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 52, 79110
Freiburg im Breisgau, Germany

smaus@informatik.uni-freiburg.de

Abstract. A linear pseudo-Boolean constraint (LPB) is an expression
of the form a1 · �1 + . . . + am · �m ≥ d, where each �i is a literal (it
assumes the value 1 or 0 depending on whether a propositional variable
xi is true or false) and a1, . . . , am, d are natural numbers. An LPB is
a generalisation of a propositional clause, on the other hand it is a re-
striction of integer linear programming. LPBs can be used to represent
Boolean functions more compactly than the well-known conjunctive or
disjunctive normal forms. In this paper, we address the question: how
much more compactly? We compare the expressiveness of a single LPB
to that of related formalisms, and give an algorithm for computing an
LPB representation of a given formula if this is possible.

1 Introduction

A linear pseudo-Boolean constraint (LPB) [1,3,5,6,7,8] is an expression of the
form a1�1 + . . .+am�m ≥ d. Here each �i is a literal of the form xi or x̄i ≡ 1−xi,
i.e. xi becomes 0 if xi is false and 1 if xi is true, and vice versa for x̄i. Moreover,
a1, . . . , am, d are natural numbers.

An LPB can be used to represent a Boolean1 function; e.g. x1 + x̄2 + x3 ≥ 3
represents the same function as the propositional formula x1 ∧ ¬x2 ∧ x3 (we
identify propositional formulae with functions). It has been observed that a
function can be often represented more compactly as a set of LPBs than as a
conjunctive or disjunctive normal form (CNF or DNF) [5,6,7,8]. E.g. the LPB
2x1+x̄2+x3+x4 ≥ 2 corresponds to the DNF x1∨(¬x2∧x3)∨(¬x2∧x4)∨(x3∧x4).

Previous works on LPBs [1,5,6,7,8] have focused on generalising techniques
applied in CNF-based propositional satisfiability solving [12,13,21] to LPBs, em-
phasising that this is beneficial because of the compactness of LPB representa-
tions. Dixon and Ginsberg show that since LPBs are a special case of integer
programming, the cutting planes proof system, a standard technique in opera-
tions research (OR), can be applied to LPBs. Cutting planes is a generalisation
of resolution, a standard technique in artificial intelligence (AI). Cutting planes
proofs can be exponentially shorter than resolution proofs [6].

But where do the LPBs come from? One possibility is that for an application
domain, one gives a direct representation of a problem as a set of LPBs (usually
1 Whenever we say “function” we mean “Boolean function”.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 288–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Boolean Functions Encodable as a Single LPB Constraint 289

interpreted as conjunction but also a disjunction is thinkable) and argues that
the alternative representation as CNF would be less compact [1,6,8]. Another
possibility is that one considers problem representations given as a CNF or
DNF and transforms these into compact LPB representations. We are not aware
that the latter has ever been proposed. In addition, except [8] (discussed in
Subsec. 6.1), all the arguments that we found in favour of LPBs were not strictly
about LPBs but about cardinality constraints, which are a subclass of LPBs.
This raises the question: how can a propositional formula be transformed into
an LPB representation that is as compact as possible? As a first but crucial step
towards this aim, we believe that one should study the question which functions
can be expressed by a single LPB, i.e. whether or not a given CNF or DNF
represents a threshold function [15]. This is the topic of this paper.

In Sec. 3 we show that there is an inclusion chain from cardinality constraints
to LPBs to the monotone functions (functions represented by a formula where
each variable occurs only in one polarity). In Sec. 4 we recall the difficulty of
determining the number of monotone functions, and give some results on the
cardinality of classes of functions. We give an upper bound for the blowup of
using a DNF instead of an LPB encoding. In Sec. 5, we show that if a DNF
can be expressed by an LPB, then the dual CNF can be expressed by a very
similar LPB, and vice versa. In Sec. 6 we give a theorem that states that φ can
be represented as an LPB if and only if φ can be decomposed into several smaller
formulae, each of which can be represented by an LPB, and all these LPBs are
in a certain sense very similar. Based on this theorem we give an algorithm for
converting a DNF φ to an LPB if possible. The proofs of all results of this paper
can be found in [18].

2 Preliminaries

We assume the reader to be familiar with the basic notions of propositional logic.
An m-dimensional Boolean function f is a function Boolm → Bool . We

say that f properly depends on the ith argument if there exist β ∈ Bool i−1,
β′ ∈ Boolm−i with f(β, 0, β′) �= f(β, 1, β′).

We follow [5]. A 0-1 ILP constraint is an inequality of the form

a1x1 + . . . + amxm ≥ d ai, d ∈ R, xi ∈ Bool (Bool ≡ {0, 1}). (1)

We identify 0 with false and 1 with true. We call the ai coefficients and d the
degree [9]. Using the relation x̄i ≡ 1 − xi and noting that it is sufficient to
consider integer coefficients, one can rewrite a 0-1 ILP constraint as a linear
pseudo-Boolean constraint (LPB)

a1�1 + . . . + am�m ≥ d ai ∈ N, d ∈ Z, �i ∈ {xi, x̄i}. (2)

For example, x1 − 0.5x2 − 0.5x3 ≥ 0 can be written as 2x1 + x̄2 + x̄3 ≥ 2. An
occurrence of a literal xi (resp., x̄i) is called an occurrence of xi in positive
(resp., negative) polarity. Note that if d ≤ 0, then the LPB is a tautology. The
reason for allowing for negative d will become apparent in Subsec. 6.2.

290 J.-G. Smaus

An LPB where ai = 1 or ai = 0 for all i ∈ [1..m] is called a cardinality
constraint (e.g. for m = 4: 1x1 +0x2+1x3 +0x4 ≥ 1, in short x1 +x3 ≥ 1). Note
that

∑
i∈J �i ≥ 1 (resp.,

∑
i∈J �i ≥ |J |) corresponds to

∨
i∈J �i (resp.,

∧
i∈J �i).

A CNF is a formula of the form c1 ∧ . . . ∧ cn where each clause cj is a
disjunction of literals. A DNF is defined dually; a conjunction of literals is called
a (dual) clause. Formally, CNFs and DNFs are sets of sets of literals, i.e. the
order of clauses and the order of literals within a clause are insignificant. For
CNFs and DNFs, we assume without loss of generality that no clause is a subset
of another clause (the latter clause would be redundant since it is absorbed).
Given a CNF, the dual DNF is obtained by swapping ∧ and ∨. Any Boolean
function can be represented by a CNF or DNF [20].

An assignment σ is a mapping {x1, . . . , xm} → Bool . The notion ‘σ satisfies
an LPB I’ is defined as expected [7].

3 Inclusion Results

The results of this section are not difficult but provide some useful insights into
the expressiveness of an LPB or cardinality constraint.

Following [19], we define monotone functions as follows.

Definition 3.1. A function is monotone (or unate [5]) if it can be written as
∨, ∧-combination of literals, where each variable occurs in only one polarity. A
monotone function is isotone if all variables occur in positive polarity.

It turns out that the polarity of a particular variable is an issue that is orthogonal
to the results of this section: each monotone function has 2m variants obtained
by modifying the polarity of each variable. Thus we assume here without loss of
generality that each variable has positive polarity.

We say that assignment σ minimally satisfies the LPB I if σ satisfies I and
any assignment obtained from σ by changing any variable occurring in I from
true to false does not satisfy I. We say that a dual clause corresponds to an
assignment if it consists of the variables assigned true by σ.

Proposition 3.2. An LPB I represents the DNF that consists of exactly those
dual clauses that correspond to assignments that minimally fulfill I.

We now give an inclusion result between the functions representable as a single
LPB and monotone functions.

Lemma 3.3. Every LPB represents a monotone function. For m ≥ 4, there is
at least one monotone function not represented by any LPB. For m ≤ 3, each
monotone function can be represented as LPB.

We now give an inclusion result between LPBs and cardinality constraints.

Lemma 3.4. Every cardinality constraint is an LPB. For m ≥ 3, there is at least
one LPB not expressible as cardinality constraint. For m ≤ 2, each monotone
function can be represented as a cardinality constraint.

Summarising, we have “cardinality constraints” ⊆ “LPBs” ⊆ “monotone func-
tions”, where these inclusions are strict except for very small dimensions.

On Boolean Functions Encodable as a Single LPB Constraint 291

4 Counting Boolean Functions

For comparing the expressiveness of formalisms for Boolean functions, it is of
interest to compare the cardinalities of the function classes that can be expressed
by the formalisms. Note, however, that from such comparisons we cannot infer
how much blowup there is when translating from one formalism to another. We
will come back to this point at the end of this section.

Proposition 4.1. There are 2(2m) m-dimensional Boolean functions [20].

Table 1. Some cardinalities

m I=(m) I≤(m) M=(m) M≤(m)
0 2 2 2 2
1 1 3 2 4
2 2 6 8 14
3 9 20 72 104
4 114 168 1824 2170

The question of how many monotone
functions there are is called Dedekind’s
problem, unsolved for more than a cen-
tury. To be precise, Dedekind’s prob-
lem is to determine the number of
isotone m-dimensional functions (De-
dekind numbers). Confusingly, what
we call isotone is sometimes called
monotone, but we use the terminology
of [19]. Nobody has found yet a closed
form expression for the Dedekind numbers. In 1999, they have been calculated
for up to m = 8, where the value is 56130437228687557907788. The Dedekind
numbers are Sequence A000372 of [16]. Although the number of isotone func-
tions is large, it is a small fraction of the number 2(2m) of Boolean functions [19].
The best known bound for the Dedekind numbers is given by [11].

We show that the number of monotone functions is related to the number of
isotone functions, so that finding a closed form expression for the former cannot
be easier than for the latter. We need the following notations.

Definition 4.2. We denote by I≤(m) the number of m-dimensional isotone
functions (Dedekind numbers); by I=(m) the number of isotone functions that
properly depend on m variables; and by M≤(m), M=(m) the corresponding
numbers of monotone functions.

Lemma 4.3. The following identities hold:

I≤(m) =
m∑

i=0

(
m

i

)
I=(i) (3)

M=(m) = 2mI=(m) (4)

M≤(m) =
m∑

i=0

(
m

i

)
M=(i) =

m∑

i=0

(
m

i

)
2iI=(i) (5)

Table 1 shows some of the values.
The number of LPBs describing distinct m-dimensional functions will proba-

bly not be easier to describe than the Dedekind numbers [14, p. 64][15]. It is not
difficult though to make a statement about cardinality constraints.

292 J.-G. Smaus

Lemma 4.4. There are 2+
∑m

k=1

(
m
k

)
·2k ·k cardinality constraints representing

distinct m-dimensional functions.

Also it is not difficult to make a statement about (dual) clauses.

Proposition 4.5. There are 3m m-dimensional functions expressible as clauses,
and likewise for dual clauses.

In analogy to Prop. 4.5, one can give a loose upper bound 3m·m for the number of
cardinality constraints, since the degree can be between 1 and m. So the number
of cardinality constraints is at most a linear factor above that of usual clauses.
However, encoding one cardinality constraint as CNF can entail an exponential
blowup in formula size (not considering encodings involving auxiliary variables,
encodings which are not equivalence preserving). More precisely, encoding x1 +
. . . + xm ≥ k requires

(
m

(m−k)+1

)
=

(
m

k−1

)
clauses of length m − k + 1 as CNF [3]

and
(
m
k

)
dual clauses of length k as DNF (in [7], this is said for CNF but in fact

it should be DNF). Note that
(

m
�m/2�

)
≥ 2m/2.

The blowup when encoding an LPB as CNF or DNF is not worse however.

Lemma 4.6. Let I ≡
∑m

i=1 aixi ≥ d be an LPB. The DNF (CNF) φ represented
by I has at most

(
m

�m/2�
)

clauses.

Thus, an LPB can represent more DNFs than a cardinality constraint but not
bigger DNFs. For example, 3x1 + 2x2 + 2x3 + x4 ≥ 4 represents a DNF of 4
dual clauses, while 2x1 + 2x2 + 2x3 + 2x4 ≥ 4 (which is effectively a cardinality
constraint) represents a DNF of 6 dual clauses.

Note that the CNF or DNF corresponding to an LPB must be distinguished
from translations of an LPB that introduce additional variables [2].

5 Duality

We show that if a DNF can be represented as an LPB, then the dual CNF can
also be represented as an LPB, and the two LPBs are closely related. As in
Sec. 3, we assume that each variable has positive polarity.

Theorem 5.1. If a DNF is represented by an LPB I ≡
∑m

i=1 aixi ≥ d, then
the dual CNF is represented by

∑m
i=1 aixi ≥

∑m
i=1 ai + 1 − d, and vice versa.

Note the border cases:
∑m

i=1 aixi ≥
∑m

i=1 ai represents a conjunction (of vari-
ables),

∑m
i=1 aixi ≥ 1 represents a disjunction.

Example 5.2. Consider 5x1 + 2x2 + 2x3 + 2x4 ≥ i for i ∈ [1..11]. Note first that
for i = 1, 2 the represented function is the same, and the dual of that function
is represented by setting i = 11, 10. Similarly one has i = 3, 4 vs. i = 9, 8. For
i = 5, the DNF is x1 ∨ (x2 ∧ x3 ∧ x4), and the dual CNF x1 ∧ (x2 ∨ x3 ∨ x4) is
represented by setting i = 7. For i = 6, the LPB represents (x1 ∧ x2) ∨ (x1 ∧
x3)∨ (x1 ∧x4)∨ (x2 ∧x3 ∧x4). According to Thm. 5.1, since 12−6 = 6, the dual
CNF is represented by the same LPB, which means that the CNF is equivalent
to its dual. This can easily be confirmed.

On Boolean Functions Encodable as a Single LPB Constraint 293

6 Representing a DNF as LPB

In this section we present an algorithm for the problem of converting a DNF
to an equivalent LPB if possible.2 Any results of this section can be applied to
CNFs rather than DNFs using Sec. 5. In this section, by a clause we always mean
a dual clause. As before, we assume that each variable has positive polarity.

6.1 Determining the Order of Coefficients

Given a DNF φ, one can determine a size order of the potential coefficients of
an LPB representing φ. That is to say, if φ can be represented as an LPB at all,
then the coefficients must respect this order.

The following notion is useful for reasoning about the structure of a formula.

Definition 6.1. Variables x and y are symmetric in φ if φ is equivalent to the
formula obtained by exchanging x and y. A set of variables Y is symmetric in
φ if each pair in Y is symmetric in φ.

Since the clause order and the order within a clause of a DNF or CNF is in-
significant, symmetry is a straightforward syntactic property.

The following lemma relates symmetric variables to identical coefficients.

Lemma 6.2. Let
∑m

i=1 aixi ≥ d be an LPB representing the DNF φ. For any
i, k ∈ [1..m], if ai = ak then xi, xk are symmetric in φ; moreover, there exists an
LPB

∑m
i=1 a′

ixi ≥ d′ representing φ such that if xi, xk are symmetric in φ then
a′

i = a′
k.

For example, x1 ∨ x2 can be represented by 2x1 + x2 ≥ 1 or x1 + x2 ≥ 1.
We want to measure how often a variable occurs in a DNF, taking the length

of the clauses into account. Intuitively, a variable is “important” if it occurs in
many clauses and if it occurs in short clauses. To formalise this, we consider
multisets of natural numbers. We represent multisets as strings of numbers in
ascending order, written, e.g. {[1, 1, 2]}.

Definition 6.3. Let A, B be two multisets of numbers. We write B � A if B
is obtained from A as follows: for each occurrence of a number n in A, either
leave this occurrence in B, or replace it by an arbitrary (possibly 0) number of
occurrences of numbers > n. We write B ≺ A if B � A and A �� B.

Example 6.4. We have {[2, 2, 2, 2]} {[2, 2, 2]} {[2, 2, 3]} {[2, 3]}.

Note that {[2, 2, 3]} {[2, 3]} can be established in two ways: removing one 2 from
{[2, 2, 3]}, or removing the 3 from {[2, 2, 3]} and then replacing one 2 from {[2, 2]} by
one 3. � is a total order on multisets of natural numbers. In our representation,
to determine whether A � B, one must simply cut off the longest common prefix
of A and B. If the remainder of A starts with a smaller number than that of B,
or if the remainder of B is empty, then A � B.
2 By Prop. 3.2, there is of course a näıve semi-decision procedure for this problem,

involving enumeration of all LPBs.

294 J.-G. Smaus

Definition 6.5. For a DNF φ, define OP(φ, x) as the multiset having one oc-
currence of n for each clause of length n in φ that contains x. We call OP(φ, x)
the occurrence pattern of x.

Example 6.6. Consider φ ≡ (x1 ∧x2)∨(x1 ∧x3)∨(x1∧x4)∨(x1∧x5)∨(x2∧x3)∨
(x2 ∧ x4) ∨ (x3 ∧ x4 ∧ x5). The occurrence patterns are OP(φ, x1) = {[2, 2, 2, 2]},
OP(φ, x2) = {[2, 2, 2]}, OP(φ, x3) = OP(φ, x4) = {[2, 2, 3]}, and OP(φ, x5) =
{[2, 3]}. φ can be represented by 4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5.

To give some more intuition, compare x1 and x2, say. For clause x1 ∧ x4,
replacing x1 by x2 yields another clause of φ, but for x1 ∧x5 this is not the case.
OP(φ, x1) therefore has one more occurrence of 2 than OP(φ, x2). The fact that
replacing x1 by x2 in x1 ∧ x5 does not yield another clause of φ means that x1
must have a bigger coefficient than x2, in any LPB representing φ.

Computing the set of occurrence patterns for all variables in φ can be done in
time linear in |φ|. In fact, the number of elements of all occurrence patterns is ex-
actly the number of literals in φ. Thus sorting the variables w.r.t. the occurrence
patterns can be done in time polynomial in |φ|.

The next lemma says that the coefficients of an LPB representing a DNF must
correspond to the order given by the occurrence patterns. Thus, given a DNF,
we know that if it can be represented as an LPB, then the coefficients of this
LPB are ordered in a certain way.

Lemma 6.7. Let φ be a DNF represented by the LPB
∑m

i=1 aixi ≥ d. Then ai ≥
ak implies OP(φ, xi) � OP(φ, xk); moreover, there exists an LPB

∑m
i=1 a′

ixi ≥ d′

representing φ such that OP(φ, xi) = OP(φ, xk) implies a′
i = a′

k.

The following is a corollary of Lemmas 6.2 and 6.7.

Corollary 6.9. If the DNF φ is represented by an LPB I, then xi, xk are sym-
metric in φ iff xi, xk have identical occurrence patterns.

The results so far can be used to make statements about which DNFs cannot be
represented by a single LPB. For example, consider φ ≡ (x1 ∧ x2 ∧ x5) ∨ (x1 ∧
x4) ∨ (x3 ∧ x4 ∧ x5) ∨ (x2 ∧ x3). We have OP(φ, xi) = {[2, 3]} for i ∈ [1..4], and
yet x1, . . . , x4 are not symmetric, and thus φ is not representable as LPB.

Also, it has been said that a single LPB can express an implication [7]. In
[8], implications of the form y → (x1 ∧ x2) are expressed as LPB. However, the
power of an LPB for expressing implications is very limited: an implication of
the form (x1 ∨ . . . ∨ xm) → (y1 ∧ . . . ∧ yl), where m, l ≥ 2, cannot be expressed
by a single LPB [10].

6.2 Decomposing a DNF

We want to find an LPB representing φ if possible. Using Lemma 6.7, we can
establish the order of the coefficients. Assume the numbering is such that we have
OP(φ, x1) � . . . � OP(φ, xm). Consider now the maximal set X = {x1, . . . , xl}

On Boolean Functions Encodable as a Single LPB Constraint 295

such that OP(φ, x1) = . . . = OP(φ, xl) (=: OP(φ, X)). If X is not symmetric
in φ, then by Cor. 6.9, φ cannot be represented by an LPB and we can stop.
Otherwise, we partition φ according to how many variables from X each clause
contains. We then remove the variables from X from each clause, which gives
l+1 subproblems. Theorem 6.15 states under which conditions solutions to these
subproblems can be combined to an LPB for φ. However, since the solutions
have to be similar in a certain sense, it turns out that we cannot simply solve
the subproblems independently and then combine the solutions, but we must
solve the subproblems in parallel, as will be shown in Subsec. 6.3.

The following statements do not require X to be maximal, e.g. if {x1, . . . , x5}
is the maximal set such that OP(φ, x1) = . . . = OP(φ, x5), then the statements
will also hold for X = {x1, x2, x3}.

Note that our formalism bears a certain resemblance with [2], where one
considers LPBs obtained from a certain given LPB by removing some variables.

Definition 6.11. Let φ be a DNF and X a subset of its variables with |X | = l.
If φ contains a clause c ⊆ X , then let kmax be the length of the longest such
clause; otherwise let kmax := ∞. For 0 ≤ k ≤ l, we define S (φ, X, k) as the
disjunction of clauses from φ containing exactly min{k, kmax} variables from X ,
with those variables removed.

When constructing the S (φ, X, k) from φ, we say that we split away the variables
in X from φ.

Example 6.12. Let φ ≡ (x1) ∨ (x2) ∨ (x3 ∧ x4) and X = {x1, x2}. We have
kmax = 1. Then S (φ, X, 0) = (x3 ∧ x4), S (φ, X, 1) = true (i.e. the disjunction of
twice the empty conjunction), and S (φ, X, 2) = true.

We must solve the l+1 subproblems in such a way that the resulting LPBs agree
in all coefficients, and that the degree difference of neighbouring LPBs is always
the same. Before giving the theorem, we give two examples for illustration.

Example 6.13. Consider φ ≡ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3 ∧ x4)
and X = {x1}. Then S (φ, X, 0) = x2 ∧ x3 ∧ x4, represented by x2 + x3 + x4 ≥ 3.
Moreover, S (φ, X, 1) = x2 ∨ x3 ∨ x4, represented by x2 + x3 + x4 ≥ 1.

Since the coefficients of the two LPBs agree, it turns out that φ can be repre-
sented by 2x1 + x2 + x3 + x4 ≥ 3. The coefficient of x1 is given by the difference
of the two degrees, i.e. 3 − 1.

Example 6.14. Consider φ ≡ (x1 ∧ x2) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x3 ∧ x4) and X =
{x1, x2}. We have S (φ, X, 0) = false, represented by x3 + x4 ≥ 4, S (φ, X, 1) =
x3 ∧ x4, represented by x3 + x4 ≥ 2, and S (φ, X, 2) = true, represented by
x3 + x4 ≥ 0. The DNF φ is represented by 2x1 + 2x2 + x3 + x4 ≥ 4. The
coefficient of x1, x2 is given by 4−2 = 2−0 = 2 (the degrees are “equidistant”).

Theorem 6.15. Let φ be a DNF in variables x1, . . . , xm and suppose X =
{x1, . . . , xl} are symmetric variables such that OP(φ, X) is maximal w.r.t. � in
φ. Then φ is represented by an LPB

∑m
i=1 aixi ≥ d, where a1 = . . . = al, iff for

all k ∈ [0..l], the DNF S (φ, X, k) is represented by
∑m

i=l+1 aixi ≥ d − k · a1.

296 J.-G. Smaus

The remaining problem is that a DNF might be represented by various LPBs, and
so even if the LPBs computed recursively do not have agreeing coefficients and
equidistant degrees, one might find alternative LPBs (such as the non-obvious
LPB for false in Ex. 6.14) so that Thm. 6.15 can be applied.

Before addressing this problem, we generalise LPBs by recording to what
extent degrees can be shifted without changing the meaning. To formulate this,
we temporarily lift the restriction that coefficients and degrees must be integers.
How to obtain integers in the end is explained at the end of Subsec. 6.3.

Definition 6.16. Given an LPB I ≡
∑m

i=1 aixi ≥ d, we call s the mini-
mum degree of I if s is the smallest number (possibly −∞) such that for
any s′ ∈ (s, d], the LPB

∑m
i=1 aixi ≥ s′ represents the same function as I. We

call b the maximum degree if b is the biggest number (possibly ∞) such that∑m
i=1 aixi ≥ b represents the same function as I.

Note that the minimum degree of I is not a possible degree of I. Since the
minimum and maximum degrees of an LPB are more informative than its actual
degree, we introduce the notation

∑m
i=1 aixi ≥ (s, b] for denoting an LPB with

minimum degree s and maximum degree b.
The next lemma strengthens Thm. 6.15, stating that information about min-

imum and maximum degrees can be maintained with little overhead.

Lemma 6.17. Make the same assumptions as in Thm. 6.15, and assume that for
all k ∈ [0..l], the DNF S (φ, X, k) is represented by Ik ≡

∑m
i=l+1 aixi ≥ d−k ·a1.

Moreover, for all k ∈ [0..l], let sk, bk be minimum and maximum degrees of Ik,
respectively. Then s := maxk∈[0..l](sk + k · a1), b := mink∈[0..l](bk + k · ak) are
the minimum and maximum degrees of

∑m
i=1 aixi ≥ d.

6.3 Composing LPBs

Theorem 6.15 suggests a recursive algorithm where, at least conceptually, in the
base case we have at most 2m trivial problems of determining an LPB, trivial
since the formula for which we must find an LPB is either true or false.

Example 6.18. Consider Ex. 6.6. To find an LPB for φ, we must find LPBs
for S (φ, {x1}, 0) and S (φ, {x1}, 1). To find an LPB for S (φ, {x1}, 0), we must
find LPBs for S (S (φ, {x1}, 0), {x2}, 0) and S (S (φ, {x1}, 0), {x2}, 1), and so forth.
Table 2 gives all the formulae for which we must find LPBs. For a concise notation
we use some abbreviations which we explain using S (·, x3..5, 0) ≡ f in the top-
right corner: it stands for S ((x3 ∧ x4 ∧ x5), {x3, x4, x5}, 0) ≡ false , i.e. the ‘·’
stands for the nearest non-shaded formula to the left, here (x3 ∧ x4 ∧ x5). Note
how we arranged the subproblem formulae in the table: e.g. (x3∧x4∧x5) has three
symmetric variables that are split away to obtain the subproblems to be solved,
so these subproblems are located three columns to the right of (x3 ∧ x4 ∧ x5).
The two shaded boxes in between contain the subproblems obtained by splitting
away only {x3}, {x3, x4}, resp.

On Boolean Functions Encodable as a Single LPB Constraint 297

Table 2. The recursive problems of Ex. 6.18

S(·, x3..4, 0) ≡ f S(·, x3..5, 0) ≡ f

S(·, x1, 0) S(·, x2, 0) ≡ S(·, x3, 0) ≡ f S(·, x3..4, 1) ≡ f S(·, x3..5, 1) ≡ f

≡ (x2 ∧ x3)∨ (x3 ∧ x4 ∧ x5) S(·, x3, 1) S(·, x3..4, 2) ≡ x5
S(·, x3..5, 2) ≡ f

(x2 ∧ x4)∨ ≡ (x4 ∧ x5) S(·, x3..5, 3) ≡ t

(x3 ∧ x4 ∧ x5) S(·, x2, 1) ≡ S(·, x3, 0) ≡ x4
S(·, x3..4, 0) ≡ f

x3 ∨ x4 S(·, x3, 1) ≡ t S(·, x3..4, 1) ≡ t

φ S(·, x3..4, 2) ≡ t

S(·, x3, 0) ≡ S(·, x3..4, 0) ≡ x5
S(·, x3..5, 0) ≡ f

S(·, x1, 1)
S(·, x2, 0) ≡ x4 ∨ x5 S(·, x3..4, 1) ≡ t S(·, x3..5, 1) ≡ t

≡ x2 ∨ x3
x3 ∨ x4 ∨ x5 S(·, x3, 1) ≡ t S(·, x3..4, 2) ≡ t S(·, x3..5, 2) ≡ t

∨x4 ∨ x5
S(·, x2, 1) ≡ t S(·, x3, 2) ≡ t S(·, x3..4, 3) ≡ t S(·, x3..5, 3) ≡ t

S(·, x3..5, 4) ≡ t

The algorithm we propose is not a purely recursive one, since the subproblems
at each level must be solved in parallel. Explained using the example, we first
find LPBs for the formulae in the rightmost column, which have 0 variables and
hence we must determine 0 coefficients. Next to the left, we have formulae that
contain (at most) x5, and we determine LPBs representing these, where we use
the same a5 for all formulae! Then we determine a4, and so forth.

Taking (x3 ∧ x4 ∧ x5) in Table 2 as an example, Thm. 6.15 suggests that
a3, a4, a5 should be equal (x3, x4, x5 are symmetric) and determined in one go.
However, since a3, a4, a5 also have to represent other subproblem formulae where
x3, x4, x5 are not necessarily symmetric, one cannot determine a3, a4, a5 in one
go, but rather first a5, then a4, then a3. Therefore, it is necessary to define and
interpret formulae obtained by splitting away fewer variables than one could
split away, in the sense of Thm. 6.15. These are the shaded formulae.

We call the formulae in column l + 1 the l-successors. Shaded formulae are
called auxiliary, the others are called main. Formulae that have no further formu-
lae to the right are called final. The following definition formalises these notions.

Definition 6.19. Let φ be a DNF in m variables. Then φ is the 0-successor of
φ. Furthermore, φ is a main successor of φ. Moreover, if φ′ is a main n-successor
of φ, and l is maximal so that xn+1, . . . , xn+l are symmetric in φ′, then for all
l′, k with 1 ≤ l′ ≤ l and 0 ≤ k ≤ l′, we say that S (φ′, {xn+1, . . . , xn+l′}, k) is an
(n+ l′)-successor of φ. The (n+ l)-successors are called main, and for l′ < l, the
(n + l′)-successors are called auxiliary. If xn+1, . . . , xn+l are the only variables
of φ′, then we call the (n + l)-successors final.

Note in particular x3 ∨x4 in column 3 in Table 2. It does not contain x5, and so
we obtain final 4-successors in the last-but-one column. Clearly, a final successor
of φ is either true or false .

298 J.-G. Smaus

Proposition 6.20. Assume φ, φ′, n, l as in Def. 6.19. For 0 < l′ < l and
0 ≤ k ≤ l′, we have

S (S (φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 0) ≡ S (φ′, {xn+1, . . . , xn+l′+1}, k)
S (S (φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 1) ≡ S (φ′, {xn+1, . . . , xn+l′+1}, k + 1)

For example, consider S ((x3 ∧ x4 ∧ x5), {x3}, 1) ≡ (x4 ∧ x5) in Table 2. We have
S ((x4 ∧ x5), {x4}, 0) ≡ S ((x3 ∧ x4 ∧ x5), {x3, x4}, 1) and S ((x4 ∧ x5), {x4}, 1) ≡
S ((x3 ∧ x4 ∧ x5), {x3, x4}, 2). Generally, each non-final successor is associated
with two formulae in the column right next to it, one slightly up and one slightly
down, obtained by splitting away the variable with the smallest index. This is
not surprising per se and corresponds to a näıve approach where we always
split away one variable at a time (for applying Thm. 6.15), thereby constructing
2m formulae in the rightmost column. The point of Prop. 6.20 is that we can
usually construct fewer formulae since S (S (φ, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 1)
and S (S (φ, {xn+1, . . . , xn+l′}, k + 1), {xn+l′+1}, 0) coincide. In Table 2, we have
12 final formulae rather than 25 = 32.

The following theorem states if and how one can find the next coefficient and
degrees for representing all k-successors of φ provided one has coefficients and
degrees for representing all (k + 1)-successors.

Theorem 6.21. Assume φ as in Thm. 6.15 and some k with 0 ≤ k ≤ m − 1,
and let Φk be the set of k-successors of φ. For every non-final φ′ ∈ Φk, suppose
we have two LPBs

∑m
i=k+2 aixi ≥ (sφ′0, bφ′0] and

∑m
i=k+2 aixi ≥ (sφ′1, bφ′1],

representing S (φ′, {xk+1}, 0) and S (φ′, {xk+1}, 1), respectively.
If it is possible to choose ak+1 such that

max
φ′∈Φk

(sφ′0 − bφ′1) < ak+1 < min
φ′∈Φk

(bφ′0 − sφ′1), (10)

then for all φ′ ∈ Φk, the LPB
∑m

i=k+1 aixi ≥ (sφ′ , bφ′] represents φ′, where

sφ′ = max{sφ′0, sφ′1 + ak+1}, b′φ = min{bφ′0, bφ′1 + ak+1} for non-final φ′ (11)

sφ′ = −∞, bφ′ = 0 for φ′ ≡ true, sφ′ =
∑m

i=k+1ai, bφ′ = ∞ for φ′ ≡ false (12)

If maxφ′∈Φk
(sφ′0 − bφ′1) ≥ minφ′∈Φk

(bφ′0 − sφ′1), then no ak+1, sφ′ , bφ′ exist
such that

∑m
i=k+1 aixi ≥ (sφ′ , bφ′] represents φ′ for all φ′ ∈ Φk.

The m-successors of φ are represented by LPBs with an empty sum as l.h.s.:∑m
i=m+1 aixi ≥ (0, ∞] for false,

∑m
i=m+1 aixi ≥ (−∞, 0] for true. Then we

proceed using Thm. 6.21, in each step choosing an arbitrary ak+1 fulfilling (10).

Example 6.22. Consider again Ex. 6.18. Table 3 is arranged in strict correspon-
dence to Table 2 and shows LPBs for all successors of Φ. In the top line we give
the l.h.s. of the LPBs, which is of course the same for each LPB in a column. In
the main table, we list the minimum and maximum degree of each formula.

In the first step, applying (10), we have to choose a5 so that

max{0 − ∞, 0 − ∞, 0 − 0, 0 − 0, −∞ − 0, −∞ − 0, −∞ − 0} < a5 <
min{∞ − 0, ∞ − 0, ∞ − −∞, ∞ − −∞, 0 − −∞, 0 − −∞, 0 − −∞}.

On Boolean Functions Encodable as a Single LPB Constraint 299

Table 3. LPBs for Ex. 6.18

4x1 + 3x2+ 3x2+

2x3 + 2x4+ 2x3 + 2x4+ 2x3 + 2x4+ 2x4+
�5

i=6 aixi

x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . ≥ . . .

(1, ∞] (0, ∞]

(3, ∞] (1, ∞] (0, ∞]
(4, 5] (2, 3] (0, 1] (0, ∞]

(4, 5] (−∞, 0]

(1, 2] (1, ∞]
(1, 2] (−∞, 0] (−∞, 0]

(4, 5] (−∞, 0]

(0, 1] (0, ∞]

(0, 1] (−∞, 0] (−∞, 0]

(0, 1] (0, 1] (−∞, 0] (−∞, 0] (−∞, 0]
(−∞, 0] (−∞, 0] (−∞, 0] (−∞, 0]

(−∞, 0]

Choosing a5 = 1 will do. The minimum and maximum degrees in column 5 are
computed using (11); e.g. the topmost (1, ∞] is (max{0, 0+1}, min{∞, ∞+1}].

In the next step, we have to choose a4 so that

max{1 − ∞, 1 − 1, 1 − 0, −∞ − 0, 0 − 0, −∞ − 0, −∞ − 0} < a4 <
min{∞ − 1, ∞ − 0, ∞ − −∞, 0 − −∞, 1 − −∞, 0 − −∞, 0 − −∞}.

Choosing a4 = 2 will do. Note that the bound 1−0 < a4 comes from the middle
box of the fifth column and thus ultimately from x3 ∨x4. Our algorithm enforces
that a4 > a5, which must hold for an LPB representing x3 ∨ x4.

In the next step, a3 can also be chosen to be any number > 1 so we choose
2 again.3 In the next step, 2 < a2 < 4 must hold so we choose a2 = 3. Finally,
3 < a1 < 5 must hold so we choose a1 = 4. We obtain the LPB 4x1 + 3x2 +
2x3 + 2x4 + x5 ≥ (4, 5] given in Ex. 6.6.

We have seen in the example how our algorithm works. However, since the choice
of ak+1 is not unique in general, one might be worried that a bad choice of ak+1
might later lead to non-applicability of Thm. 6.21. We have a lemma stating
that this is not a problem [18].

However, there are some pragmatic choices. As stated in the example, to
obtain an LPB with small coefficients, one might always choose ak+1 as the
smallest possible integer value. It might also occur, though not in the above
example, that ak+1 is forced to be between neighbouring integers, in which case
it cannot be an integer itself. In this case, one can multiply all LPBs of the
current system by 2 (this obviously preserves the meaning of the LPBs) before
proceeding so that ak+1 can be chosen to be an integer.
3 The algorithm could be improved by determining a3 and a4 in one go since x3, x4

are symmetric in Φ. We refrain from spelling this out to avoid further complication.

300 J.-G. Smaus

From the construction of the successors (see Table 2) it follows that all formu-
lae in a column together have size less than all formulae in the column to the left
of it, so that the entire table has size less than |φ| · (m + 1). One can thus show
that the complexity of the algorithm is polynomial in the size of φ, while the
size of φ itself can be exponential in m. In fact, this is the most interesting case,
because in this case an LPB representation may yield an exponential saving.

A thorougher analysis of the complexity of the algorithm will be due once it
is embedded into a more complete algorithm which converts an arbitrary DNF
(or CNF) into a set of LPBs. It is clear that such an algorithm would first
have to partition the DNF according to the polarity of each variable, which is
straightforward. The next step would be to partition a DNF where each variable
occurs in only one polarity into sub-DNFs each of which can be represented by
a single LPB. This step is nontrivial and the main topic for future work.

7 Conclusion

Linear pseudo-Boolean constraints have attracted interest because they can often
be used to represent Boolean functions more compactly than CNFs or DNFs,
and because techniques applied in CNF-based propositional satisfiability solving
can be generalised to LPBs, which can be more efficient than solving a problem
based on a CNF representation [1,5,6,7,8]. This generalisation is essentially an
application of a technique known from OR to the field of AI, or more specifically,
propositional logic [6].

It is assumed here that the problems, as they arise in an application domain,
have a natural encoding as LPB, and that the CNF encoding would be larger.
Our work was initially motivated by three main issues, which were not addressed
in previous works.

Firstly, several authors have emphasised that an LPB representation of a func-
tion can be exponentially more compact than a CNF representation [1,5,6,7,8].
However, it is shown in fact that cardinality constraints can be exponentially
more compact than a CNF. Thus no evidence is given that the additional ex-
pressive power that LPBs have compared to cardinality constraints is useful.

Secondly, it has been noted en passant that a single LPB can be used to
express an implication [7], but it remains unclear what kind of implications can
or cannot be expressed. In fact, the power of an LPB for expressing implications
is very limited.

Most importantly, since an LPB representation can be more compact than a
CNF representation, one might use LPB encodings even in cases where they do
not arise naturally from the application domain. That is, one might convert a
CNF to a (small) set of LPBs and then apply LPB solving [1,5,6,7,8]. Here we
see the potential for practical application of our work.

As a further comment on the first point, Barth [3] mentions that LPBs arise in
AI applications [4]. Since he used a solver that could only deal with cardinality
constraints, he proposes a transformation of LPBs to cardinality constraints.
Note that this transformation goes in the opposite direction compared to ours,
from a more concise to a less concise representation.

On Boolean Functions Encodable as a Single LPB Constraint 301

In [8], LPBs are used for bounded model checking. At one point, an LPB of
the form x1 + x2 + 2ȳ ≥ 2 (which is not a cardinality constraint) is used.

Apart from that, the above works say little about where the problem in-
stances come from, and if anything, then these are in fact cardinality constraints
rather than LPBs. In [1], problems Min-Cover, Max-SAT, and MAX-ONEs are
mentioned. E.g. Max-SAT is the problem of finding a variable assignment that
maximises the number of satisfied clauses of an unsatisfiable SAT instance. Fur-
thermore, applications from design automation [5], the pigeonhole problem [6],
and gate level netlists [7] are mentioned as applications.

However, we are not suggesting that our approach of converting a CNF or
DNF to an LPB is the only way to go. If for a problem domain, there is a
natural direct encoding as an LPB not going via CNF or DNF, then this should
definitely be considered.

Hooker has proposed an algorithm for generating the strongest 0-1 ILP con-
straints, within a candidate set T , that are implied by a set S of 0-1 ILP con-
straints [9]. Letting T be the set of all LPBs, the algorithm can be used to
transform a CNF to an LPB. However, the algorithm is practical only for cer-
tain restrictions of T . In the general case, which we need here, it is unclear if
the algorithm is any better than enumerating and checking all LPBs. This is
however an interesting topic for future work.

Complementary to this paper, we have also obtained results about Boolean
functions that can definitely not be represented compactly as a set of LPBs. More
precisely, there is a class of monotone functions for which the DNF representation
is exponential and the LPB representation saves nothing [17].

We summarise our contributions to the understanding of LPBs. We demon-
strated that the functions expressible as one LPB constraint are a strict subset
of the monotone functions. We gave some results about the cardinality of vari-
ous classes of Boolean functions, and showed that the blowup when encoding an
LPB as CNF or DNF is not worse than when encoding a cardinality constraint.
We showed that the problems of encoding a DNF or a CNF as LPB have a very
simple duality. Finally and most importantly, we gave an algorithm for comput-
ing an LPB representation for a DNF whenever this is possible.

Acknowledgements. This work was supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB TR14/AVACS). I would
like to thank Markus Behle, Martin Fränzle, Marc Herbstritt, Christian Herde,
Felix Klaedtke, Bernhard Nebel, and the other AVACS colleagues, for useful
discussions.

References

1. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic
ILP versus specialized 0-1 ILP: an update. In Lawrence T. Pileggi and Andreas
Kuehlmann, editors, Proceedings of the 2002 IEEE/ACM International Conference
on Computer-Aided Design, pages 450–457. ACM, 2002.

302 J.-G. Smaus

2. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translation of pseudo
Boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Com-
putation, 2:191–200, 2006.

3. Peter Barth. Linear 0-1 inequalities and extended clauses. In Andrei Voronkov,
editor, Proceedings of the 4th International Conference on Logic Programming and
Automated Reasoning, volume 698 of LNCS, pages 40–51. Springer-Verlag, 1993.

4. Peter Barth and Alexander Bockmayr. Solving 0-1 problems in CLP(PB). In
Proceedings of the 9th Conference on Artificial Intelligence for Applications. IEEE,
1993.

5. Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver.
In Proceedings of the 40th Design Automation Conference, pages 830–835. ACM,
2003.

6. Heidi E. Dixon and Matthew L. Ginsberg. Combining satisfiability techniques from
AI and OR. The Knowledge Engineering Review, 15:31–45, 2000.

7. Martin Fränzle and Christian Herde. Efficient SAT engines for concise logics:
Accelerating proof search for zero-one linear constraint systems. In Moshe Y. Vardi
and Andrei Voronkov, editors, Proceedings of the 10th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, volume 2850 of
LNCS, pages 302–316. Springer-Verlag, 2003.

8. Martin Fränzle and Christian Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design, 2006. Online
version, http://dx.doi.org/10.1007/s10703-006-0031-0. Print version in press.

9. John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of
Mathematics and Artificial Intelligence, 6(1-3):271–286, 1992.

10. John N. Hooker and Hong Yan. Tight representations of logical constraints as
cardinality rules. Mathematical Programming, 85(2):363–377, 1999.

11. D. Kleitman and G. Markowsky. On Dedekind’s problem: the number of iso-
tone Boolean functions. II. Transactions of the American Mathematical Society,
213:373–390, 1975.

12. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

13. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, pages 530–535. ACM, 2001.

14. Raúl Rojas. Neural Networks. A Systematic Introduction. Springer-Verlag, 1996.
15. Ching Lai Sheng. Threshold Logic. Academic Press, 1969.
16. Neil J. A. Sloane. On-line encyclopedia of integer sequences.

http://www.research.att.com/∼{}njas/sequences/Seis.html.
17. Jan-Georg Smaus. Representing Boolean functions as linear pseudo-Boolean con-

straints. In Youssef Hamadi, editor, Proceedings of the CP 2006 Workshop on the
Integration of SAT and CP techniques, 2006.

18. Jan-Georg Smaus. On Boolean functions encodable as a single linear pseudo-
Boolean constraint. Technical Report 230, Institut für Informatik, Universität
Freiburg, 2007. Also available as TR No. 13 on http://www.avacs.org/.

19. Vetle Ingvald Torvik and E. Trintaphyllou. Inference of monotone Boolean func-
tions. In Chris A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Opti-
mization, pages 472–480. Kluwer Academic Publishers, 2001.

20. Ingo Wegener. The Complexity of Boolean Functions. Wiley & Sons, 1987.
21. Hantao Zhang. SATO: An efficient propositional prover. In William McCune,

editor, Proceedings of the 14th International Conference on Automated Deduction,
volume 1249 of LNCS, pages 272–275. Springer-Verlag, 1997.

http://dx.doi.org/10.1007/s10703-006-0031-0
http://www.research.att.com/~{}njas/sequences/Seis.html
http://www.avacs.org/

Solving a Stochastic Queueing Control Problem with
Constraint Programming

Daria Terekhov and J. Christopher Beck

Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, Canada

{dterekho,jcb}@mie.utoronto.ca

Abstract. In a facility with front room and back room operations, it is useful to
switch workers between the rooms in order to cope with changing customer de-
mand. Assuming stochastic customer arrival and service times, we seek a policy
for switching workers such that the expected customer waiting time is minimized
while the expected back room staffing is sufficient to perform all work. Three
novel constraint programming models and a shaving algorithm are presented. Ex-
perimental results show that the best constraint programming model, using shav-
ing, is able to find and prove optimal solutions for almost all problem instances
within a reasonable run-time, but that an existing heuristic algorithm performs
better in terms of solution quality over time. A hybrid method combining the
heuristic and the best constraint programming method is shown to perform better
than either of these approaches separately. This is the first work of which we are
aware that solves a queueing control problem with constraint programming.

1 Introduction

Many retail facilities, such as stores or banks, have back room and front room opera-
tions. In the front room, workers have to serve arriving customers, and customers form
a queue and wait to be served when all workers are busy. In the back room, work is
less time-sensitive, and may include such tasks as sorting or processing paperwork. All
workers in the facility are cross-trained and are assumed to be able to perform back
room tasks equally well and serve customers with the same service rate. Therefore, it
makes sense for the managers of the facility to switch workers between the front room
and the back room depending both on the number of customers in the front room and the
amount of work that has to be performed in the back room. These managers are thus in-
terested in finding a switching policy that minimizes the expected customer waiting time
in the front room, subject to the constraint that the expected number of workers in the
back room is sufficient to complete all required work. This queueing control problem
has been studied in detail by Berman et al. [3], who propose a heuristic for solving it.

In this paper, a constraint programming (CP) approach is proposed for the problem.
Thus, the contributions of this paper are twofold. Firstly, CP is, for the first time, used
to solve a stochastic queueing control problem. Secondly, a complete approach for a
problem for which only a heuristic algorithm existed previously is presented.

The paper is organized as follows. Section 2 presents a description of the problem
and the work done by Berman et al. [3]. Section 3 presents three CP models for this

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 303–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 D. Terekhov and J.C. Beck

problem. Section 4 describes a shaving procedure used for improving the efficiency of
the CP models. In Section 5, the performance of the three CP models is compared and
the best CP approach is contrasted with the Berman et al. heuristic. Based on these
results, a hybrid method is proposed and evaluated in Section 6. In Section 7, a discus-
sion of the results is presented. Section 8 describes related problems and states some
directions for future work. Section 9 concludes the paper.

2 Problem Description

Let N denote the number of workers in the facility, and let S be the maximum number
of customers allowed in the front room at any one time.1 When there are S customers
present, arriving customers will be blocked from joining the front room queue. Cus-
tomers arrive according to a Poisson process with rate λ. Service times in the front
room follow an exponential distribution with rate μ. The minimum expected number of
workers that is required to be present in the back room in order to complete all of the
necessary work is assumed to be known, and is denoted by Bl, where l stands for ‘lower
bound’. Only one worker is allowed to be switched at a time, and both switching time
and switching cost are assumed to be negligible. The goal of the problem is to find an
optimal approach to switching workers between the front room and the back room so as
to minimize the expected customer waiting time, denoted Wq , while at the same time
ensuring that the expected number of workers in the back room is at least Bl. Thus, a
policy needs to be constructed that specifies how many workers should be in the front
room and back room at a particular time, and when switches should occur.

2.1 Problem Definition

Berman et al. define a policy in terms of quantities ki, for i = 0, . . . , N . This policy
states that there should be i workers in the front room whenever there are between
ki−1 + 1 and ki customers (inclusive) in the front room, for i = 1, 2, . . . , N . As an
illustration, consider the policy (k0, k1, k2, k3) = (0, 2, 3, 6), with N = 3. This policy
states that when there are k0 +1 = 1 or k1 = 2 customers in the front room, there is one
worker in the front room; when there are 3 customers, there are 2 workers; and when
there are 4, 5, or 6 customers, all 3 workers are employed in the front. This definition
of a policy forms the basis of the model proposed by Berman et al., with the switching
points ki, i = 0, . . . , N − 1, being the decision variables of the problem, and kN being
fixed to S, the capacity of the system. In this paper, we follow Berman et al. and define
an optimal policy as a set of values for the switching points, ki, which minimize the
expected waiting time subject to the back room constraint.2

In order to determine the expected waiting time and the expected number of workers
in the back room given a policy defined by particular values of ki, Berman et al. first

1 The notation used by Berman et al. [3] is adopted throughout this paper.
2 The term optimal policy is used in queueing control literature [6] to mean both the optimal

type of policy and the optimal parameter values for a given policy type. In particular, for our
problem, it is possible that an alternative type of policy (e.g., one that allowed randomization
in the switching decision) may lead to a smaller expected waiting time.

Solving a Stochastic Queueing Control Problem with Constraint Programming 305

define a set of probabilities, P (j), for j = k0, k0 + 1, . . . , S. Each P (j) with j > k0
denotes the steady-state (long-run) probability of there being exactly j customers in the
facility. Since k0 may not necessarily be 0 in a particular policy, P (k0) has a different
interpretation – it is the probability of having between 0 and k0 (inclusive) customers
in the front room. Berman et al. define a set of balance equations for the determination
of these probabilities:

P (j)λ = P (j + 1)iμ j = ki−1, ki−1 + 1, . . . , ki − 1 i = 1, ..., N. (1)

An additional constraint on the values of P (j) is
∑S

j=k0
P (j) = 1.

All quantities of interest can be expressed in terms of the probabilities P (j). Ex-
pected number of workers in the front room is

F =
N∑

i=1

ki∑

j=ki−1+1

iP (j) (2)

while the expected number of workers in the back room is B = N − F . The expected
number of customers in the front room is

L =
S∑

j=k0

jP (j). (3)

Expected waiting time in the queue can be expressed as

Wq =
L

λ(1 − P (S))
− 1

μ
. (4)

This expression is derived using Little’s Laws [6,8] for a system of capacity kN = S.
Given a family of switching policies K = {K; K = {k0, k1, ..., kN−1, S}, ki inte-

ger, ki − ki−1 ≥ 1, k0 ≥ 0, kN−1 < S}, the problem can formally be stated as:

minimize Wq (5)

s.t B ≥ Bl

equations (1), (2), (3), (4).

Note that B, F and L are expected values and can be real-valued. Consequently, the
constraint B ≥ Bl states that the expected number of workers in the back room resulting
from the realization of any policy should be greater than or equal to the minimum
expected number of back room workers needed to complete all back room work. At any
particular time point, there may, in fact, be fewer than Bl workers in the back room.

2.2 Berman et al.’s Heuristic

Berman et al. propose a heuristic method for the solution of this problem based on the
following theorem, the details and proof of which are presented in [3].

306 D. Terekhov and J.C. Beck

Theorem 1 (Berman et al.). Consider two policies K and K ′ which are equal in all
but one ki. In particular, suppose that the value of k′

J equals kJ − 1, for some J from
the set {0, ..., N − 1} such that kJ − kJ−1 ≥ 2, while k′

i = ki for all i �= J . Then (a)
Wq(K) ≥ Wq(K ′), (b) F (K) ≤ F (K ′), (c) B(K) ≥ B(K ′).

In addition, Berman’s heuristic is based on two policies having special properties.
Firstly, consider the policy K̂ = {k0 = 0, k1 = 1, . . . , kN−1 = N − 1, kN = S}.
This policy results in the largest possible F , and the smallest possible B and Wq . Be-
cause this policy yields the smallest possible expected waiting time, if it is feasible, then
it is optimal. On the other hand, the smallest possible F and the largest possible Wq and

B are obtained by applying the policy ˆ̂
K = {k0 = S−N, k1 = S−N+1, . . . , kN−1 =

S − 1, kN = S}. Thus, if this policy is infeasible, the problem (5) is infeasible also.

Heuristic P1 of Berman et al. starts with the policy ˆ̂
K. If this policy is feasible, then

the switching point ki with the smallest index i satisfying the condition ki − ki−1 > 1
for 0 < i < N and ki > 0 for i = 0 is decreased by 1. By Theorem 1, this results
in a policy with a better Wq value but smaller B. The heuristic continues decreasing
switching points with this property until the resulting policy becomes infeasible (or is
the policy K̂, in which case P1 stops because this policy is optimal). Once infeasibility
is reached, a switching point ki having the smallest index and satisfying the condition
ki+1 − ki > 1, for i < N , is increased by 1. By Theorem 1, increasing a switching
point with such properties allows the policy to become more feasible in terms of the
back room constraint, but also increases Wq . Once a feasible policy is found again, the
heuristic tries to find switching points to decrease. Thus, the heuristic alternates between
trying to reach a policy with smaller Wq and a policy that is feasible with respect to the
Bl constraint. Each time an infeasible policy is found, the set of switching points that
can be increased or decreased at subsequent steps is reduced in order to prevent cycling.
Assuming the problem is feasible, P1 stops when it is unable to find any more switching
points to decrease or increase, in which case it returns the best feasible policy that it has
been able to find. The heuristic guarantees optimality only when the policy it returns is

K̂ or ˆ̂
K.

Empirical results regarding the performance of heuristic P1 are not presented in [3]
and so the ability of P1 to find good switching policies is not explicitly evaluated. In
particular, it is not clear how close policies provided by P1 are to the optimal policies.

3 Constraint Programming Models

Some work has been done on extending CP to stochastic problems [12,13,16]. Our
problem is different from the problems addressed in these papers because all of the
stochastic information can be explicitly encoded as constraints and expected values, and
there is no need for either stochastic variables or scenarios. The major motivation for
our work is to investigate whether CP can be successfully used to solve such problems.
To this end, we investigate three CP models for our queue control problem:

– The If-Then model is a CP version of the formal definition of Berman et al.

Solving a Stochastic Queueing Control Problem with Constraint Programming 307

– The PSums model uses some slightly different sets of variables, and some con-
straints are included which are based on closed-form expressions derived from the
constraints that are used in the If-Then model.

– The Dual model includes a set of dual decision variables in addition to the variables
used in the If-Then and PSums models. Most of the constraints of this model are
expressed in terms of these dual variables.

Implementation of our models uses the predefined constraints available in standard CP
solvers.

The proposed models have some similarities. Firstly, all of them have a set of de-
cision variables ki, i = 0, 1, . . . , N , representing the switching policy. Each ki with
i < N has the domain [i, i + 1, . . . , S − N + i] (since ki < ki+1) and kN is con-
strained to equal S. Secondly, a set of auxiliary variables is included in each model
to represent the probabilities needed for the calculation of the quantities of interest. In
addition, a constraint stating that B ≥ Bl, a set of constraints ki < ki+1, for all i from
0 to N − 1, (since the number of workers in the front room, i, increases only when the
number of customers, ki, increases) and constraint (6) are included in all three models.
Constraint (6) ensures that an assignment of all decision variables leads to a unique
solution of the balance equations.

P (k0)
N∑

i=0

βSum(ki) = 1 (6)

The calculation of
∑N

i=0 βSum(ki) requires some auxiliary variables, which are de-
fined in Equations (7) and (8). The derivation of these equations, based on expressions
presented in [3], can be found in [14].

βSum(ki) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xi

(
λ

μ

)ki−1−k0+1 (
1
i

)
⎡

⎢⎢⎢⎣

1−
�
� λ

iμ

�
�

ki−ki−1

1−
�
� λ

iμ

�
�

⎤

⎥⎥⎥⎦ if λ
iμ �= 1

Xi

(
λ

μ

)ki−1−k0+1 (
1
i

)
(ki − ki−1) otherwise.

(7)

Xi =
i−1∏

g=1

(
1
g

)kg−kg−1

i = 1, . . . , N ; (X1 ≡ 1) (8)

All models also include constraints for representing F , L and Wq . However, the expres-
sions for F and L differ slightly depending on the model, as described below.

3.1 If-Then Model

The initial model is based directly on the formulation of Berman et al. The model in-
cludes the variables P (j) for j = k0, k0 + 1, . . . , k1, k1 + 1, . . . , S − 1, S, each repre-
senting the probability of there being j customers in the front room. These are floating
point variables with domain [0..1]. The balance equations are represented by a set of

308 D. Terekhov and J.C. Beck

if-then constraints. For example, the first balance equation, P (j)λ = P (j + 1)μ for
j = k0, k0 + 1, ..., k1 − 1, is represented by the constraint: (k0 ≤ j ≤ k1 − 1) →
P (j)λ = P (j + 1)μ. Thus, somewhat inelegantly, an if-then constraint of this kind has
to be added for each j between 0 and S − 1 in order to represent one balance equation.
In order to represent the rest of these equations, this technique has to be applied for
each pair of switching points ki, ki+1 for i from 0 to N − 1. In addition, such if-then
constraints are used for Equation (2), due to the dependence of this constraint on sums
of variables between two switching points.

3.2 PSums Model

In order to avoid the if-then constraints, closed-form expressions3 for the sums of prob-
abilities between two switching points were derived and used as the basis of the second
model. The set of P (j) variables from the formulation of Berman et al. is replaced by
a set of PSums(ki) variables for i = 0, ..., N − 1, together with a set of probabili-
ties P (ki) for i = 0, 1, 2, . . . , N . The PSums(ki) variable represents the sum of all
probabilities between ki and ki+1 − 1 and is defined in Equation (9). Equation (10) is a
recursive formula for computing P (ki). P (k0) can be computed using Equation (6).

PSums(ki) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (ki)
1 −

[
λ

(i + 1)μ

]ki+1−ki

1 − λ

(i + 1)μ

if λ
(i+1)μ �= 1

P (ki)(ki+1 − ki) otherwise.

(9)

P (ki+1) =
[

λ

(i + 1)μ

]ki+1−ki

P (ki) (10)

All quantities of interest can be expressed in terms of the PSums(ki) variables and the
switching point probabilities, P (ki). In particular, the expected number of workers in
the front room is

F =
N∑

i=1

i [PSums(ki−1) − P (ki−1) + P (ki)] . (11)

L, the expected number of customers in the front room, is

L =
N−1∑

i=0

L(ki) + kNP (kN) (12)

3 The derivation of most of these expressions is based on expressing each P (j) in terms of
P (ki) for ki ≤ j via the balance equations. In some derivations, such as that of Equation (9),
the geometric series formula is used. Details can be found in [14].

Solving a Stochastic Queueing Control Problem with Constraint Programming 309

where

L(ki) = kiPSums(ki) +

P (ki)
[

(λ
(i+1)μ)ki+1−ki (ki−ki+1)+(λ

(i+1)μ)ki+1−ki+1(ki+1−ki−1)+ λ
(i+1)μ

[(i+1)μ−λ
(i+1)μ]2

]
. (13)

3.3 Dual Model

The problem can be alternatively formulated using variables wj , which represent the
number of workers in the front room when there are j customers present. Several ex-
pressions and constraints of the above models can be simplified by using these variables.
Firstly, the balance equations can be stated as

P (j)λ = P (j + 1)wj+1μ j = 0, 1, . . . , S − 1. (14)

This formulation of the balance equations avoids the inefficient if-then constraints.
Secondly, F , the expected number of workers in the front room, can be stated as

F =
S∑

j=0

wjP (j). (15)

The difficulty with this model arises from the fact the P (j) variables should be de-
fined only for j ≥ k0 (since P (k0) is the probability of having from 0 to k0 customers in
the front room). It is hard to express this condition without explicitly having the variable
k0 in the model. Because of this, and since it is known that adding redundant variables
to a model may be beneficial [11], it was decided that both the ki and the wj variables
would be included in this model. In order to use two sets of redundant variables, the
following channelling constraints4 have to be included:

wj < wj+1 ↔ kwj = j j = 0, 1, . . . , S − 1, (16)

wj = wj+1 ↔ kwj �= j j = 0, 1, . . . , S − 1, (17)

wj = i ↔ ki−1 + 1 ≤ j ≤ ki j = 0, 1, . . . , S, i = 1, . . . , N. (18)

Additional constraints on the worker variables that are included in the model are:
w0 = 0, wS = N and wj ≤ wj+1 for all j from 0 to S − 1.

Preliminary experiments with these models showed poor performance. As one might
expect from a problem with few constraints between decision variables, there was lit-
tle constraint propagation, and search was required to essentially investigate the entire
branch-and-bound tree. As a consequence, we examine shaving [4,9].

4 Constraints (16) and (17) are redundant given the constraint wj ≤ wj+1. However, such
redundancy can often lead to increased propagation [7]. In future work, we will examine the
effect that removing one of these constraints may have on the performance of the program.

310 D. Terekhov and J.C. Beck

4 Shaving

Shaving is a procedure for enforcing consistency in CSPs. It is based on temporarily
adding constraints to the problem, performing propagation and making inferences ac-
cording to the resulting state of the problem [5,15]. In our proposed shaving algorithm,
AlternatingSearchAndShaving, two shaving procedures are run initially until they are
no longer able to make domain reductions. Search is then performed until a better so-
lution is found, at which point the shaving procedures are applied again. Subsequently,
search and shaving alternate until one of them proves optimality of the best solution
found. The first of the two shaving procedures makes inferences based on the feasibil-
ity of policies with respect to the Bl constraint, while the second one is based on the
constraint Wq ≤ bestWq, where bestWq is the Wq value of the best policy found up
to that point. In both shaving procedures, if the inferred constraint violates the current
upper or lower bound of a ki, then the best policy found up to that point is optimal.

Bl Shaving. Let min(ki) and max(ki) be, respectively, the smallest and largest values
in the current domain of variable ki. At each step of the Bl-based shaving procedure,
ki = min(ki) or ki = max(ki) is temporarily added to the model for i ∈ {0, ..., N−1}.
If ki = min(ki) is added, then all other switching points are assigned the maximum
possible values subject to the condition that kn < kn+1, ∀n ∈ {0, ..., N − 1}. If the
resulting policy is infeasible, the constraint ki > min(ki) can be permanently added:
if all variables except ki are set to their maximum values, and the problem is infeasible
(based on the Bl constraint), then, by Theorem 1, in any feasible policy ki must be
greater than min(ki). If ki = max(ki) is added, all other switching points are assigned
the minimum possible values. If the resulting policy is feasible, the constraint ki <
max(ki) can be permanently added to the model. Since all variables except ki are at the
minimum values already, and ki is at its maximum, it must be true, again by Theorem 1,
that in any better solution the value of ki has to be smaller than max(ki). In both cases,
after the resulting policy is checked for feasibility, the temporary constraint is removed.

Wq Shaving. The Wq-based shaving procedure makes inferences based strictly on the
constraint Wq ≤ bestWq. The constraint B ≥ Bl is removed prior to running this
procedure in order to eliminate the possibility of incorrect inferences. Similarly to the
Bl-based shaving procedure, a constraint of the form ki = max(ki) is added and the
smallest possible values are assigned to the rest of the variables. As the Bl constraint
has been removed, the only reason why the policy could be infeasible is because it has a
Wq value greater than the best Wq that has been encountered so far. Since all switching
points except ki are assigned their smallest possible values, this implies that in any
solution with a better Wq , the value of ki has to be strictly smaller than max(ki).

5 Experimental Results

Several sets of experiments were performed in order to evaluate the efficiency of the
proposed models and the shaving procedure, as well as to compare the performance of
the best CP model with the performance of the heuristic proposed by Berman et al. All

Solving a Stochastic Queueing Control Problem with Constraint Programming 311

CP models were implemented in ILOG Solver 6.2, while Berman et al.’s heuristic was
implemented using C++. In all models, search assigns switching points in increasing
index order and the smallest value in the domain of each variable is tried first.

The experimental results presented here are based only on the instances for which

the optimal is between K̂ and ˆ̂
K, as instances in which either of these policies is opti-

mal, or ˆ̂
K is infeasible, are easily solved both by the heuristic and the CP models with

the elementary Bl-based shaving procedure. Preliminary experiments indicated that the
value of S has a significant impact on the efficiency of the algorithms since higher val-
ues of S result in larger domains for the ki variables for all models and also a higher
number of wj variables for the Dual model. Therefore, we considered instances for
each value of S from the set {10, 20, . . . , 100} in order to gain an accurate understand-
ing of the performance of the model and the heuristic.5 Thirty feasible instances for

which the optimal policy is neither K̂ nor ˆ̂
K were generated for each S. A 10-minute

time limit on the overall run-time of the program was enforced in the experiments. All
experiments were performed on a Dual Core AMD 270 CPU with 1 MB cache, 4 GB
of main memory, running Red Hat Enterprise Linux 4.

In order to perform comparisons between the CP models and the heuristic, we look
at the number of instances in which the optimal solution was found and in which op-
timality was proved, and the mean relative error (MRE). MRE is a measure of so-
lution quality that allows one to observe how quickly a particular algorithm is able
to find a good solution. MRE is defined as 1

|M|
∑

m∈M
c(a,m)−c∗(m)

c∗(m) , where a is a
particular algorithm used to solve the problem, M is the set of problem instances on
which the algorithm is being tested, c(a, m) is the cost of a solution found for instance
m by algorithm a, and c∗(m) is the best solution for instance m found during our
experiments.

5.1 Comparison of Constraint Programming Models

Table 1 presents, for each model, the number of instances in which it finds the best
solution (out of 300), the number of instances in which it finds the optimal solution
(out of the 240 instances for which the optimal solution is known), and the number of
times it proves optimality. It can be seen that all models find the optimal solution in
the 240 instances for which it is known. However, the PSums model outperforms the
other two models in the rest of the performance measures, proving optimality in 79%
of all instances, and finding the best-known solution of any algorithm in 97.3% of all
the instances considered.

Observations from Table 1 can be further confirmed by looking at Figure 1 (Left).
The figure shows how MRE changes over the first 50 seconds of run-time for If-Then,
PSums and Dual models with AlternatingSearchAndShaving, and for P1 (we com-
ment on the performance of P1 in Section 5.2). It can be seen that PSums is, on av-
erage, able to find better solutions than the other two models given the same amount of
run-time.

5 For most instances with S greater than 100, neither our method nor Berman et al.’s heuristic
P1 may be used due to numerical instability. The maximum value of S used in the experiments
of Berman et al. is also 100.

312 D. Terekhov and J.C. Beck

Table 1. Comparison of three CP models with AlternatingSearchAndShaving with Berman’s
Heuristic P1. The Hybrid model is presented in Section 6.

best found (/300) # optimal found (/240) # optimal proved (/300)
PSums 292 240 238
If-Then 280 240 234
Dual 281 240 234
P1 282 239 0

PSums-P1 Hybrid 300 240 238

5.2 P1 vs. the Best Constraint Programming Approach

It can be seen, from Table 1, that the heuristic performs extremely well, finding the
best-known solution in only ten fewer instances than the PSums model, in two more
instances than the If-Then model and in one more than the Dual. Moreover, it finds,
but, of course, cannot prove, the optimal solution in 79.6% of all instances (239 out of
the 240 instances for which the optimal is known). Its run-time is negligible, while the
mean run-time of the best CP model, PSums, is approximately 130 seconds.

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Run Time (seconds)

M
ea

n
R

el
at

iv
e

E
rr

or

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

If−Then Model
PSums Model
Dual Model
Berman Heuristic P1

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

Values of S

M
ea

n
R

el
at

iv
e

E
rr

or

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

PSums Model At 10 seconds
PSums Model At 150 seconds
PSums Model At 500 seconds
Berman Heuristic

Fig. 1. Left: Comparison of MRE of three CP models with AlternatingSearchAndShaving with
Berman’s P1 heuristic. Right: MRE for each value of S for P1 and the PSums model.

From Figure 1 (Left), it can be observed that the heuristic achieves a very small
MRE in a negligible amount of time. After about 50 seconds of run-time, the MRE
over 300 instances resulting from PSums with AlternatingSearchAndShaving becomes
comparable to that of the heuristic MRE.

In Figure 1 (Right), the MRE for the 30 instances for each value of S is presented
for P1 and for PSums with AlternatingSearchAndShaving at 10, 150 and 500 seconds
of run-time. After 10 seconds, the performance of PSums is comparable to that of the
heuristic for S ≤ 40, but the heuristic appears to be quite a bit better for higher values
of S. At 150 seconds, the performance of PSums is comparable to that of the heuristic

Solving a Stochastic Queueing Control Problem with Constraint Programming 313

except at S of 50 and 80. After 500 seconds, PSums has a smaller or equivalent MRE
over the 300 instances and also a lower MRE for each value of S except 50 and 100.

Overall, these results indicate that P1 performs extremely well—its run-time is neg-
ligible, it finds the optimal solution in 79.6% of the instances and the best-known so-
lution in 94%. Moreover, it results in very low MRE. Although PSums with Alternat-
ingSearchAndShaving is able to achieve better performance in both of these measures,
it is clear that these improvements are quite small given that the PSums run-time is so
much higher than the run-time of the heuristic.

6 PSums-P1 Hybrid

Naturally, it is desirable to create a method that would be able to find a solution of
high quality in a short amount of time, as does Berman’s heuristic, and that would
also have the same high rate of being able to prove optimality within a reasonable run-
time as does PSums with AlternatingSearchAndShaving. It is therefore worthwhile to
experiment with a PSums-P1 Hybrid, which starts off by running P1 and then, assuming
the instance is feasible, uses the PSums model with AlternatingSearchAndShaving to
find a better solution or prove the optimality of the solution found by P1 (infeasibility

of an instance is proven if the heuristic determines that policy ˆ̂
K is infeasible).

Since P1 is very fast, running it first incurs almost no overhead. We have also shown
that P1 provides solutions of very high quality (in 94% of instances used in the experi-
ments, it found the best-known solution). Therefore, the first iteration of the Wq-based
procedure should be able to significantly prune the domains of switching point variables
because of the good quality solution found by the heuristic. Continuing by alternating
the two shaving techniques and search, which has also been shown to be an effective
approach, should result in at least as many instances for which optimality is proven as
for the PSums model with AlternatingSearchAndShaving.

The proposed hybrid algorithm was tested on the same set of 300 instances that was
used above. Results of the hybrid are presented in Table 1. The hybrid was able to find
the best-known solution in all 300 cases while still being able to prove optimality in as
many cases as PSums. Thus, in spite of the good quality solutions that are discovered
quickly because of the heuristic, the domains of switching points in some instances are
not reduced enough to increase the number of cases in which optimality is proved. The
mean run-time for the hybrid is 130.18 seconds, which is essentially identical to the
mean run-time of 129.98 seconds for PSums with AlternatingSearchAndShaving.

Thus, the hybrid is the best choice for solving this problem: it finds as good a solution
as the heuristic in as little time (close to 0 seconds), it is able to prove optimality in as
many instances as the best pure CP method, and it finds the best-known solution in all
instances considered. Moreover, all these improvements are achieved with a negligible
increase in the average run-time over the PSums model with shaving.

7 Discussion

In this section, we examine some of the reasons for the poor performance of the CP
models without shaving and suggest reasons for the observed differences among them.

314 D. Terekhov and J.C. Beck

7.1 Lack of Back-Propagation

In our experiments, we have some instances for which even the PSums-P1 hybrid with
AlternatingSearchAndShaving is unable to find and prove optimality within the 10-
minute time limit. Further analysis of the algorithm’s behaviour suggests that this per-
formance can be explained by the lack of back-propagation. Back-propagation refers to
the pruning of the domains of the decision variables due to the addition of a constraint
on the objective function: the objective constraint propagates “back” to the decision
variables, removing domain values and so reducing search. In the CP models presented
above, there is very little back-propagation. We illustrate this by focusing on the PSums
model without shaving.

Throughout search, if a new best solution is found, the constraint Wq ≤ bestWq,
where bestWq is the new objective value, is added to the model. However, the domains
of the switching point variables are usually not reduced in any way after the addition of
such a constraint. This can be illustrated by observing the amount of propagation that
occurs in the model when Wq is constrained.

For example, consider an instance of the problem with S = 6, N = 3, λ = 15,
μ = 3, and Bl = 0.32. The initial domains of the switching point variables are
[0..3], [1..4], [2..5] and [6]. The initial domains of the probability variables P (ki) for

each i, after the addition of Wq bounds provided by K̂ and ˆ̂
K, are listed in Table 2.

The initial domain of Wq , also determined by the objective function values of K̂ and
ˆ̂
K, is [0.22225..0.425225]. The initial domains of L and F , are [2.8175e−7..6] and
[0..2.68], respectively. Upon the addition of the constraint Wq ≤ 0.306323, where
0.306323 is the known optimal value for this instance, the domain of Wq is reduced
to [0.22225..0.306323], the domain of L becomes [1.68024..6] and the domain of F
remains [0..2.68]. The domains of P (ki) after this addition are listed in Table 2. The do-
mains of both types of probability variables are reduced by the addition of the new Wq

constraint. However, the domains of the switching point variables remain unchanged.
Therefore, even though all policies with value of Wq less than 0.306323 are infeasible,
constraining Wq to be less than this value does not result in any reduction of the search
space. It is still necessary to enumerate all remaining policies in order to show that no
better feasible solution exists.

One of the reasons for the lack of pruning of the domains of the ki variables due to
the Wq constraint is likely the complexity of the expression for Wq . In particular, recall
that Wq is expressed in all models as Wq = L

λ(1−P (S)) − 1
μ . In the example above,

when Wq is constrained to be less than or equal to 0.306323, we get the constraint
0.306323 ≥ L

15(1−P (S)) − 1
3 , which implies that 9.594845(1 − P (S)) ≥ L. This ex-

plains why the domains of both L and P (S) change upon this addition to the model. The
domains of the rest of the P (ki) variables change because of the relationships between
the P (ki)s (Equation (10)) and because of the constraint that the sum of all probability
variables has to be 1. Similarly, the domains of PSums(ki) change because these vari-
ables are expressed in terms of P (ki) (Equation (9)). However, because the actual ki

variables mostly occur as exponents in expressions for PSums(ki), P (ki), and L(ki),
the minor changes in the domains of PSums(ki), P (ki), or L(ki) that happen due to
the constraint on Wq have no effect on the domains of the ki. This analysis suggests

Solving a Stochastic Queueing Control Problem with Constraint Programming 315

Table 2. Domains of P (j) and PSums(j) variables for j = k0, k1, k2, k3, before and after the
addition of the constraint Wq ≤ 0.306323

Before addition of Wq ≤ 0.306323 After addition of Wq ≤ 0.306323

j P (j) PSums(j) P (j) PSums(j)

k0 [4.40235e−6 ..0.979592] [0..1] [4.40235e−6 ..0.979592] [0..0.683666]

k1 [1.76094e−7 ..1] [0..1] [0.000929106..1] [0..0.683666]

k2 [2.8175e−8 ..0.6] [2.8175e−8 ..1] [0.0362932..0.578224] [0.0362932..0.71996]

k3 [4.6958e−8..1] N/A [0.28004..0.963707] N/A

that it may be interesting to investigate a CP model based on log-probabilities rather
than on the probabilities themselves. Such a model may lead to stronger propagation.

7.2 Differences in the Constraint Programming Models

Experimental results demonstrate that the best CP model of those proposed is PSums.
In all models, the shaving procedures make the same number of domain reductions
because shaving is based on the Wq and Bl constraints. However, the time that each
shaving iteration takes is dependent on the model. Our empirical results show that each
iteration of shaving takes a smaller amount of time with the PSums model than with
the other two. This appears to be the primary reason for the PSums model finding good
solutions faster than the other models, as shown in Figure 1 (Left). PSums is radically
different from the other two models because it does not include an explicit representa-
tion of the balance equations. This model thus avoids the if-then constraints required in
the If-Then model. Moreover, PSums has a smaller number of probability variables than
the other two models, because it calculates sums of probabilities between two switching
points rather than the probability of j customers being present in the front room for all
j from 0 to S. This reduces the number of probability variables from S + 1 to 2N + 1.
In addition, the probability variables included in this model are more tightly linked by
the closed-form expressions. Thus, because of the tighter links between variables, and a
smaller number of variables, each iteration of shaving in PSums takes a smaller amount
of time than in the other two models.

A comparison of the If-Then model with the Dual using Figure 1 shows that the If-
Then model is usually able to find good solutions in a smaller amount of time. This is
slightly surprising because the Dual model uses a much simpler representation of the
balance equations and the expression for F , avoiding the use of if-then constraints. One
possible explanation for the Dual sometimes taking more time to find a good solution is
that, at each shaving iteration, it has to assign more variables (via propagation) than the
other two models. In particular, in order to represent a switching policy, the Dual has to
assign S wj variables in addition to N ki variables (usually, S is much larger than N).

On the other hand, within the given time limit, the Dual found the best solution
in one more instance than the If-Then model. This may be due to an increase in the
amount of propagation which results from the use of dual variables. In fact, an exam-
ination of the initial domains of the probability variables for the example instance of
Section 7.1 shows that these domains are quite a bit smaller in the Dual model than
in the If-Then model (e.g. the domain of P (0) is [0..1] in the If-Then model, while it

316 D. Terekhov and J.C. Beck

is [0..0.00926208] in the Dual). This examination also shows that the initial domains
of probability variables in the If-Then and Dual models are actually smaller than those
in the PSums model. This implies that there exist some instances in which more initial
propagation occurs in the If-Then model or the Dual model than in PSums.

8 Related Work and Possible Extensions

Several papers exist that deal with similar types of problems as the one considered here.
For example, Berman & Larson [2] study a similar problem of switching workers between
two rooms in a retail facility where the customers in the front room are divided into two
categories, those “shopping” in the store and those at the checkout. Similarly, Palmer &
Mitrani [10] consider the problem of switching computational servers between different
types of jobs where the randomness of user demand may lead to unequal utilization of
resources. Batta et al. [1] study the problem of assigning cross-trained customer service
representatives to different types of calls in a call centre, depending on estimated demand
patterns for each type of call. These three papers provide examples of problems for which
CP could prove to be a useful approach. Investigating CP solutions to these problems is
therefore one possible direction of future work. In particular, it may be interesting to look
at problems with more complex constraints (e.g., on capacities or between workers) that
may be naturally suitable for the CP approach. A complementary direction is to study
the basic models of queueing theory in order to understand the applicability of CP.

9 Conclusions

In this paper, a constraint programming approach is proposed for the problem of finding
the optimal times to switch workers between the front room and the back room of
a retail facility under stochastic customer arrival and service times. This is the first
work of which we are aware that examines solving such stochastic queueing control
problems using constraint programming. The best pure CP method proposed is able
to prove optimality in a large proportion of instances within a 10-minute time limit.
Previously, there existed no non-heuristic solution to this problem aside from naive
enumeration. As a result of our experiments, we hybridized the best pure CP model with
the heuristic proposed for this problem in the literature. This hybrid technique is able to
achieve performance that is equivalent to, or better than, that of each of the individual
approaches alone: it is able to find very good solutions in a negligible amount of time
due to the use of the heuristic, and is able to prove optimality in a large proportion of
problem instances within 10 CPU minutes due to the CP model.

This work demonstrates for the first time that constraint programming can be a good
approach for solving a stochastic optimization problem based on queueing theory.

References

1. R. Batta, O. Berman, and Q. Wang. Balancing staffing and switching costs in a
call/service center. European Journal of Operations Research. To Appear. Available at:
http://www.acsu.buffalo.edu/˜batta/papers/Batta et al.pdf.

Solving a Stochastic Queueing Control Problem with Constraint Programming 317

2. O. Berman and R. Larson. A queueing control model for retail services having back room
operations and cross-trained workers. Computers and Operations Research, 31(2):201–222,
2004.

3. O. Berman, J. Wang, and K. P. Sapna. Optimal management of cross-trained workers
in services with negligible switching costs. European Journal of Operations Research,
167(2):349–369, 2005.

4. Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In Proceedings of
the Joint International Conference and Symposium on Logic Programming, pages 363–377.
MIT Press, 1996.

5. S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based cutting planes:
An application to the resource-constrained project scheduling problem. INFORMS Journal
on Computing, 17(1):52–65, 2005.

6. D. Gross and C. Harris. Fundamentals of Queueing Theory. John Wiley & Sons, Inc., 1998.
7. B. Hnich, B. Smith, and T. Walsh. Dual modelling of permutation and injection problems.

Journal of Artificial Intelligence Research, 21:357–391, 2004.
8. J. D. C. Little. A proof of the queueing formula L = λW . Operations Research, 9:383–387,

1961.
9. P. Martin and D. B. Shmoys. A new approach to computing optimal schedules for the job

shop scheduling problem. In Proceedings of the Fifth Conference on Integer Programming
and Combinatorial Optimization, pages 389–403, 1996.

10. J. Palmer and I. Mitrani. Optimal server allocation in reconfigurable clusters with multiple
job types. In Proceedings of the Computational Science and Its Applications International
Conference, pages 76–86, 2004.

11. B.M. Smith. Modelling for constraint programming. Lecture Notes for the
First International Summer School on Constraint Programming, 2005. Available at:
http://www.math.unipd.it/˜frossi/cp-school/.

12. S.A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming: A scenario-
based approach. Constraints, 11(1):53–80, 2006.

13. S.A. Tarim and A. Miguel. A hybrid Benders’ decomposition method for solving stochastic
constraint programs with linear recourse. In Joint ERCIM/CoLogNET International Work-
shop on Constraint Solving and Constraint Logic Programming, pages 133–148, 2005.

14. D. Terekhov and J. C. Beck. Solving a stochastic queueing control problem with
constraint programming. Technical Report MIE-OR-TR2006-06, Department of Me-
chanical and Industrial Engineering, University of Toronto, 2006. Available from
http://www.mie.utoronto.ca/labs/ORTechReps/.

15. M.R.C. van Dongen. Beyond singleton arc consistency. In Proceedings of the 17th European
Conference on Artificial Intelligence, pages 163–167, 2006.

16. T. Walsh. Stochastic constraint programming. In Proceedings of the 15th European Confer-
ence on Artificial Intelligence, pages 111–115, 2002.

Constrained Clustering Via Concavity Cuts

Yu Xia�

Center of Operations Research and Econometrics (CORE), Université catholique de
Louvain, 34 Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium

xiay@optlab.mcmaster.ca.

Abstract. In this paper, we adapt Tuy’s concave cutting plane method to
the problem of finding an optimal grouping of semi-supervised clustering.
We also give properties of local optimal solutions to the semi-supervised
clustering. On test data sets with up to 1500 points, our algorithm typi-
cally find a solution with objective value around 2% smaller of the initial
function value than that obtained by k-means algorithm within 4 seconds,
although the run time is hundred times of that of the k-means algorithm.

Keywords: Partitional clustering, semi-supervised clustering, instance-
level constraints, global optimization, concave cutting plane method.

1 Introduction

We are interested in efficient algorithms for partitional clustering, i.e. partition-
ing n points (or patterns, objectives), denoted as a1, . . . ,an ∈ R

d, into k clusters
(or groups, classes) C1, . . . , Ck. Clustering is a fundamental tool in statistics,
computer science, etc. And it has been widely used in areas such as finance,
biology. See [7] for applications of it.

We use the k-means (square-error) criteria in this paper, as it is the most
common clustering criterion. For the k-means criteria, the dissimilarity mea-
sure is the squared Euclidean distance; the task is to assign each point to its
closest cluster centroid, denoted as ci (i = 1, . . . , k), which are representations
of corresponding clusters. The objective function (the square-error loss) is the
following

k∑

j=1

∑

ai assigned to Cj

‖ai − cj‖2
2 .

The most widely used algorithm for partional clustering is the k-means algo-
rithm. It works as follows. Starting from an initial partition, it assigns each
pattern to its closed centroid. Then it re-calculate the centroids and re-assign
each pattern. It repeats until there is no re-assignment. Unfortunately, this algo-
rithm may not produce even a local optimal solution. An example in [8] shows

� Research was done when the author was a JSPS foreign research fellow at the In-
stitute of Statistical Mathematics, Japan. The author thanks support from JSPS
(Japan Socienty for the Promotion of Science). The author also thanks three anony-
mous referees for their helpful suggestions and comments.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 318–331, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constrained Clustering Via Concavity Cuts 319

that a solution of the k-means algorithm can have arbitrarily high approxima-
tion ratio. it is desirable that the clustering results be as accurate as possible.
For instance, in categorizing the customers of a bank according to their credit
risk, it is bad to assign a low credit risk customer to the high risk group; and it
is worse to put a high risk customer to the low risk group.

Labeled data are good sources to improve the accuracy of clustering, but
they may not be easy or cheap to obtain. In many applications, individual la-
bels are not known a priori; however, some instance-level information about the
relationship between some points may be available. Instance-level constraints in-
clude must-link constraints, i.e. some points should have the same, but unknown,
label, and cannot-link constraints, i.e. two points should be in different, but un-
known, groups. Wagstaff et al. in [13] show that incorporating instance-level
constrains in k-means clustering can reduce the number of iterations and total
runtime of clustering, provide a better initial solution, increase accuracy, gener-
alize the constraint information to improve performance on the unconstrained
instances as well. Another application of instance-level constraints in clustering
is the learning of a distortion measure. It is observed empirically that groups
obtained by k-means clustering tend to be equal-numbered and hyper-spherical-
shaped [5]. In [15], Xing et al. show that with a Mahalanobis distance metric
instead of the Euclidean distance, the k-means clustering can identify clusters of
hyper-ellipsoidal shape. Their numerical experiments show that a Mahalanobis
distance metric with the instance-level constraints can improve the k-means clus-
tering. In [3], Bilenko et al. further incorporate metric learning in the seeding of
k-means, and in learning individual Mahalanobis distance metric for each clus-
ter. Clustering with instance-level constraints, also known as semi-supervised
clustering, has been studied in [4], [5], [10], [9], [2], and some other papers as
well. Their numerical results show that instance-level constraints do help im-
prove the performance of k-means algorithm. However, the algorithms they use
are some variants of the k-means or EM algorithm, which can not guarantee to
find a global minimum.

In this paper, we use a global optimization approach to solve the semi-
supervised clustering. Our numerical results show that this algorithm can get a
better solution than k-means algorithm does.

The remaining of the paper is organized as follows. In § 2, we give our mathe-
matical model of the semi-supervised clustering. In § 3, we discuss the properties
of a local solution to the mathematical model. In § 4, we describe the concavity
cutting plane method for the model. In § 5, we give some numerical examples.

2 The Mathematical Model

To describe our approach to the semi-supervised clustering, in this part, we give
our mathematical model of the semi-supervised clustering problem.

The integer programming model. Let X = (xij) denote the cluster member-
ship matrix, with xij = 1 (resp., 0) if the ith pattern belongs (resp., does not

320 Y. Xia

belong) to cluster Cj (i = 1, . . . , n; j = 1, . . . , k). Then the constrained k-means
clustering problem can be modeled as the following:

min
xij , cj

k∑

j=1

n∑

i=1

xij ‖ai − cj‖2
Mj

(1a)

s.t.
k∑

j=1

xij = 1 (i = 1, . . . , n) (1b)

xrj = xsj (r − s must-linked; r, s = 1, . . . , n; j = 1, . . . , k) (1c)
xpj + xqj ≤ 1 (p − q cannot-linked; p, q = 1, . . . , n; j = 1, . . . , k)

(1d)

xij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , k) . (1e)

The constraint (1b) ensures that each pattern ai is assigned to one and only one
cluster. The must-link constraint (1c) imposes patterns ar and as be in a same
cluster. The cannot-link constraint (1d) forces patterns ap and aq be assigned to
different clusters. Mj is the distance metric for cluster Cj , which is symmetric
positive semidefinite. The metric is Euclidean if Mj = I. The metric may be
obtained a priori or learned from the data.

Observe that (1) is a nonconvex nonlinear integer programming model, which
is hard to solve. Instead, we consider its continuous relaxation.

We first define some notations on the domain X ≥ 0 (which means xij ∈ R
+

and xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , k)) . Let xj represent the jth column of X ,
which is the membership vector of cluster Cj . We denote the number of patterns

in cluster Cj by nj
def=

∑n
i=1 xij . When nj > 0, under given xj ,

∑n
i=1 xij‖ai −

cj‖2
Mj

is convex in cj (a real-valued function f(x) is convex on its domain D if
∀x1,x2 ∈ D and 0 ≤ λ ≤ 1, f(λx1)+ f [(1−λ)x2] ≤ f(λx1 +(1−λ)x2)); so the
minimum with regard to ci is attended at cj =

�n
i=1 xijai�

n
i=1 xij

, the centroid of Cj ,

where
∂
��n

i=1 xij‖ai−cj‖2
Mj

�

∂cj
= 0. Note that nj = 0 implies xj = 0. In this case,

the minimum of the objective function is attained at cj = 0. Therefore, in the
remaining of the paper, we set

cj =

{�n
i=1 xijai�

n
i=1 xij

nj > 0 ,

0 nj = 0 .
(2)

Denote the square-error, or within-cluster variation, of cluster Cj as

SSEj(xj) =

⎧
⎨

⎩

∑n
i=1 xij

∥∥∥ai −
�n

i=1 xijai�
n
p=1 xpj

∥∥∥
2

Mj

nj > 0 ,

0 nj = 0 .

Then the sum of square-error for the clustering is SSE(X) =
∑k

j=1 SSEj(xj).
And the objective function (1a) is minX SSE(X).

Constrained Clustering Via Concavity Cuts 321

The continuous relaxation. The continuous relaxation of (1) can then be written
as:

minX SSE(X)
s.t.

∑k
j=1 xij = 1 (i = 1, . . . , n)

xrj = xsj (r − s must-linked; r, s = 1, . . . , n; j = 1, . . . , k)
xpj + xqj ≤ 1 (p − q cannot-linked; p, q = 1, . . . , n; j = 1, . . . , k)
xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , k) .

(3)

3 The Solutions

In this part, we study the characteristics of (1) and (3). Especially, we show that
(3) is a concave program and describe its extreme points.

3.1 General Properties of the Mathematical Model

We first show that (3) is a concave program, i.e., − SSE(X) is convex and the
feasible region is convex.

Lemma 1. The function SSE(X) is concave and continuously differentiable
over X ≥ 0.

Proof. We only need to show that the Hessian of SSE(X) exists and is negative
semidefinite over X ≥ 0, since it is sufficient for the assertion of Lemma 1. We
first derive the gradient of SSE(X).

Let ei denote the vector whose ith entry is 1 and the remaining entries are 0.
When nj = 0, by definition,

∂ SSE(X)
∂xlj

= lim
t→0

SSE(X + teleT
j) − SSE(X)

t
= lim

t→0

t
∥∥al − tal

t

∥∥2
Mj

t
= 0 .

When nj > 0, by chain rule,

∂ SSE(X)
∂xlj

=
∥∥∥∥al −

∑n
i=1 xijai∑n
i=1 xij

∥∥∥∥
2

Mj

+ 2
n∑

i=1

xij

(∑n
p=1 xpjap∑n

p=1 xpj
− ai

)T

Mj

⎛

⎜⎝
al∑n

p=1 xpj
−

∑n
p=1 xpjap

(∑n
p=1 xpj

)2

⎞

⎟⎠ .

Since
∑n

i=1 xij

(�n
p=1 xpjap�

n
p=1 xpj

− ai

)
= 0 and

(
al�

n
p=1 xpj

−
�n

p=1 xpjap

(�n
p=1 xpj)2

)
is inde-

pendent of i, the second term in the above equality vanishes.
Therefore,

∂ SSE(X)
∂xlj

=

⎧
⎨

⎩

∥∥∥al −
�n

i=1 xijai�
n
i=1 xij

∥∥∥
2

Mj

nj > 0 ,

0 nj = 0 .
(4)

322 Y. Xia

Let vlj ∈ R
d denote the difference of the lth pattern from the centroid of

cluster Cj , i.e.,

vlj
def= al − cj = al −

∑n
i=1 xijai∑n
i=1 xij

.

Then from (4), we obtain that for any l, g ∈ {1, . . . , n} and j, m ∈ {1, . . . , k}:

∂2 SSE(X)
∂xljxgm

=

{
− 2

nj
vT

ljMjvgj j = m and nj > 0

0 j �= m or nj = 0 .

Let Vj denote the matrix whose lth row is the vector vT
lj . Then ∇2 SSEj(X) ={

− 2
nj

VjMjV
T
j nj > 0

0 nj = 0 .
The Hessian of SSE(X) is

∇2 SSE(X) =

⎡

⎢⎣
∇2 SSE1(X)

. . .
∇2 SSEk(X)

⎤

⎥⎦ ;

so it is negative semidefinite for X ≥ 0.
This concludes our proof.

The feasible region of (3), denoted as D, is a polytope, i.e. it is bounded and is
the intersection of a finite number of half spaces. It follows that D is a convex
set.

Next we describe the extreme points of D, since the minimum of a concave
function is achieved at some extreme points of its feasible region.

Proposition 1. Any integer feasible solution to (3) is an extreme point (vertex)
of D and any extreme point of D is an integer feasible solution to (3).

Proof. We first prove that an integer feasible solution X of (3) is an extreme
point of D, i.e., there do not exist Y, Z ∈ D, Y �= Z, and 0 < λ < 1, such that
X = λY + (1 − λ)Z.

Assume xij = 1. from (1b), we have xil = 0 (l �= j). Then for any 0 < λ < 1,
the equality xil = λyil + (1 − λ)zil and yil ≥ 0, zil ≥ 0 imply

yil = zil = 0 (l �= j). (5)

From (5) and (1b), we have
yij = zij = 1.

Therefore, Y = Z = X . So X is an extreme point of D.
Next, we prove that any extreme point of D is an integer feasible solution to

(3). We only need to show that any non-integer feasible solution to (3) is not an
extreme point of D.

Let X be a non-integer feasible solution to (3), i.e. there exisits a must-link
closure {amp}r

p=1 whose membership 0 < xij < 1 (i = m1, . . . , mr). By (1b),

Constrained Clustering Via Concavity Cuts 323

there exists l �= j such that 0 < xil < 1 (i = m1, . . . , mr). In addition, we have
0 < xij + xil ≤ 1 (i = m1, . . . , mr). Let Y be a matrix with yij = xij + xil, yil =
0, (i = m1, . . . , mr) and other components the same as those of X . Let Z be
a matrix with zil = xij + xil, zij = 0, (i = m1, . . . , mr) and other components
being the same as those of X . Then Y, Z ∈ D. Let λ = xij

xij+xil
(i = m1, . . . , mr).

We obtain X = λY + (1 − λ)Z and 0 < λ < 1. Therefore, X is not an extreme
point of D.

We have proved that the set of extreme points of D is exactly the set of integer
feasible solutions to (1).

The minimum of a concave function is attained on the facets of its feasible region.
The extreme points of the feasible region of the continuous relaxation of (3) are
integer. So Proposition 1 shows that SSE of a global solution to (3) is the same
as that to (1).

For updating the centroid of each cluster, a must-link closure can be replaced
by its centroid weighted by its number of patterns; however, a must-link closure
cannot be replaced by any single point for local minimum search.

4 The Concave Cutting Algorithm

Based on the analysis in §3, we give a concave optimization algorithm for (3) in
this section. A large number of approaches for concave minimization problems
can be traced back to Tuy’s cutting algorithm [12] for minimizing a concave
function over a full dimensional polytope. We will briefly describe Tuy’s cuts
in the first part of this section for completeness. However, Tuy’s cuts can’t be
applied directly to (3), because its feasible region doesn’t have full dimension.
In the second part of this section, we will show how to adapt Tuy’s cutting
algorithm to (3) and prove that this method can find a global minimum of (3)
in finite steps.

4.1 Basic Ideas of Tuy’s Cuts

For self-completeness, we sketch Tuy’s cuts (also known as concavity cuts) below
(see [6] for details). We assume x ∈ R

n in this subsection.
Tuy’s cuts are originally designed to find a global minimum of a concave

function f(x) over a polyhedron D ∈ R
n. It requires

1) D has full dimension, i.e. intD �= ∅;
2) for any real number α, the level set {x ∈ R

n : f(x) ≥ α} is bounded.
Let x0 be a local minimum and a vertex of D. Denote γ = f(x0). Since D is

full-dimensional, x0 has at least n adjacent vertices. Let y1, . . . ,yp denote the
vertices adjacent to x0 (p ≥ n). For i = 1, . . . , n, let

θi
def= sup{t : t ≥ 0, f

(
x0 + t(yi − x0)

)
≥ γ}; (6)

denote
zi def= x0 + θi(yi − x0).

324 Y. Xia

Then the cone originated at x0 generated by the halflines in the directions yi−x0

covers the feasible region. Because f is concave, any point in the simplex Spx def=
conv{x0, z1, . . . , zn} has objective value no less than γ. Therefore, one can cut
off Spx from further search for a global minimum. Since x0 is a vertex of D
which has full dimension, one can always find n binding constraints at x0, and
x0 has n linearly independent edges. Without loss of generality, assume that
z1 − x0, . . . , zn − x0 are linearly independent. Define

π = eT Diag(
1
θ1

, . . . ,
1
θn

)U−1, U = [y1 − x0, . . . ,yn − x0]. (7)

Then the inequality
π(x − x0) > 1 (8)

provides a γ-valid cut for (f, D), i.e., any x having objective value f(x) < γ
must satisfy (8). In other words, if (8) has no solution in D, x0 must be a global
minimum. Note that 1) θi ≥ 1; so Spx contains x0 and all its neighbor vertices;
2)the larger the θi, the deeper the cuts, i.e., the more portion of the feasible region
is cut off. Following is the original pure convexity cutting algorithm based on
the above idea.
Cutting Algorithm (Algorithm V.1., Chapter V, [6])
Initialization

Search for a vertex x0 which is a local minimizer of f(x). Set γ = f(x0), D0 =
D.
Iteration i = 1,2, . . .

1. At xi construct a γ-valid cut πi for (f, Di).
2. Solve the linear program

max πi(x − xi) s.t. x ∈ Di. (9)

Let ωi be a basic optimum of this LP. If πi(ωi − xi) ≤ 1, then stop: x0 is a
global minimum. Otherwise, go to step 3.

3. Let Di+1 = Di ∩ {x : πi(x− xi) ≥ 1}. Starting from ωi find a vertex xi+1 of
Di+1 which is a local minimum of f(x) over Di+1. If f(xi+1) ≥ γ, then go
to iteration i + 1. Otherwise, set γ ← f(xi+1), x0 ← xi+1, D0 ← Di+1, and
go to iteration 1.

Theorem 1. (Theorem V.2, [6]) If the sequence {πi} is bounded, the above
cutting algorithm is finite.

4.2 The Adapted Tuy’s Cutting Algorithm

In this section, we will describe how we construct the concavity cuts. And we will
prove the finite convergence of our algorithm and compare it with the k-means
algorithm.

Based on the argument at the end of §3, to reduce the number of variables,
we consider the following equivalent form of (3).

Constrained Clustering Via Concavity Cuts 325

Let Li (i = 1, . . . , N) represent the must-link closures, i.e., ∩N
i=1Li = ∅,

∪N
i=1Li = {a1, . . . ,an}, and all the patterns in Li are must-linked together.

Let ri be the number of patterns in Li. If ri = 1, Li has only a singleton.

minyij

∑k
j=1

∑N
i=1 yij

∑
l∈Li

∥∥∥∥al −
�N

i=1 yij
�

l∈Li
al�

N
i=1 yijri

∥∥∥∥
2

Mj

s.t.
∑k

j=1 yij = 1 (i = 1, . . . , N)
ypj + yqj ≤ 1 (p − q cannot-linked; j = 1, . . . , k)
yij ≥ 0 (i = 1, . . . , N ; j = 1, . . . , k) .

(10)

Construction of the Cutting Plane. Once we find a local minimum, we need
to add a cut to reduce the feasible region. At the mth iteration, let Y 0 ∈ R

N×k

be a local optimal solution to (10) in Dm and γ be the smallest SSE obtained
from the previous iterations. Next, we will give details of how we form the cutting
plane (7), including the construction of U and θi for (7), although the feasible
region of (10) doesn’t have full dimension — each vertex is adjacent to at most
N × (k − 1) other vertices.

1) Adjacent vertices.
We give N × k adjacent vertices to Y 0 below.

Let Ei,j denote the matrix whose (i, j) entry is 1, the other entries are 0; and
let E(i,·) denote the matrix whose ith row are 1’s, the remaining entries are 0.
The orders of Ei,j and E(i,·) will be clear from the context. For l = 1, . . . , N ,
assume that Ll = {ali}rl

i=1 is assigned to cluster lj . Let Z l,i (i = 1, . . . , k; i �= lj)
denote the matrix different from Y 0 only by the assignment of Ll to cluster i.
Choose 1 ≤ lp ≤ k, lp �= lj. And let Z l,lj denote the matrix different from Y 0

only in its (l, lp) entry being 1 as well, i.e.,

Z l,i =

{
Y 0 − El,lj + El,i i �= lj

Y 0 + El,lp i = lj
.

Then Zl,i (l = 1, . . . , N ; i = 1, . . . , k) are N ×k adjacent vertices of Y 0, although
some of them may not be feasible due to cannot-links. We form the vector y0

by stacking all the columns of Y 0 together. Similarly, we form the vectors zl,i.
It is not hard to see that U = [z1,1 − y0, . . . ,y1,k − y0, . . . , zN,k − y0] has full
rank. Let I represent the identity matrix. It is straightforward to verify that
the corresponding U−1 of (8) is a block diagonal matrix with lth block being
I + E(lj ,·) − E(lp,·) − Elj ,lj .

Because Z l,lj and some Z l,li are not feasible to (3), part of the simplex
conv{y0, z1,1, . . . , z1,k, . . . , zN,k} lies outside the feasible region of (10); never-
theless, the concavity cut can exclude some part of the feasible region of (3).

2) The cutting plane.
Next, we will determine the θi’s of (7), and subsequently the cutting plane π.

It is easy to see that θl,lj = ∞, and θl,i = 1 if al cannot be assigned to cluster
i ; otherwise, θl,i is a solution to the problem below.

326 Y. Xia

max s

s.t. 0 ≤ s ≤ nlj

rl
,

SSE(Y 0) + u ≥ γ

(11)

with

u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
‖srlcold

i −s
�rl

p=1 alp‖2

Mi

nold
i +srl

−
‖srlcold

j −s
�rl

p=1 alp‖2

Mj

nold
j −srl

+s
∑rl

p=1

[∥∥alp − cold
i

∥∥2
Mi

−
∥∥alp − cold

j

∥∥2
Mj

]
(nnew

j > 0, nnew
i > 0) ;

−
‖srlcold

i −s
�rl

p=1 alp‖2

Mi

nold
i +srl

+s
∑rl

p=1

[∥∥alp − cold
i

∥∥2
Mi

−
∥∥alp − cold

j

∥∥2
Mj

]
(nnew

j = 0, nnew
i > 0) ;

0 (nnew
i = 0) .

For simplification, we use j instead of lj in the formulation for u. The first
constraint in (11) keeps the assignment matrix in the feasible region where SSE
is concave by Lemma 1.

It is not difficult to solve (11). When nnew
j = 0 and nnew

i > 0, we have srl = nj ,
i.e. s = nj

rl
; when nnew

i = 0, we have s = 0. From Y 0 being a local minimum, we
have θl,i ≥ 1. It is also easy to verify that

SSE(Y 0) + u − γ is continuous on [0,
nlj

rl
] and is nonnegative at s = 1 . (12)

When nnew
j > 0 and nnew

i > 0, multiplying (nold
i + srl)(nold

j − srl) to both
sides of SSE(Y 0) + u − γ ≥ 0 will reduce it to a cubic polynomial inequality in
s. All the coefficients of SSE(Y 0) + u − γ are real; so it can only have one or
three real roots with the possibility of equal roots if b3 �= 0. The three roots of
the corresponding cubic equation can be obtained by Cardano’s formula.

The cutting plane is

πl,i =

{
1

θl,i − 1
θl,lp

i �= lj

− 1
θl,lp

i = lj
πy0 = −

n∑

l=1

1
θl,lp

.

Finite Convergence of the Algorithm. The simplex Spx in our algorithm
is centered at a local minimum of (1); so each concavity cut eliminates at least
one vertex of (1). In addition, the number of vertices of (1) is finite. Therefore,
the number of cuts is finite. From this along with the fact that only finite pivots
are needed to reach a local minimum of (1), we conclude that our method can
find a global minimum of (1) in finite steps.

The distance from the cut to Y 0 is 1
‖π‖2 . The minimal solution to the convex

univariate
∑k

j=1(
1

θl,j − x)2 is achieved at x∗ =
�k

j=1
1

θl,j

k . Therefore, for deeper
cuts, we choose θl,lP with

lp = arg min
j∈{1,...k}

∣∣∣∣x
∗ − 1

θl,j

∣∣∣∣ .

Constrained Clustering Via Concavity Cuts 327

5 Numerical Examples

We’ve implemented the above algorithm in Ansi C with the linear program re-
sulting for cutting plane solved by the CPLEX 91 callable library. Numerical
results on traditional clustering show that the above cutting method can get a
better solution than the k-means algorithm for traditional clustering; see [14]. In
this part, we give some test results on semi-supervised clustering. The compu-
tation is done on a Toshiba satellite notebook, with Intel Pentium M processor
of 1.70 GHz, 496 MB of RAM, Windows XP home edition operating system.
Our algorithm stops if 1) a global solution is obtained; or 2) more than 21 cuts
are added; or 3) no improvement in SSE after 8 consecutive cuts. We’ve tested
our algorithm on some datasets from the UCI machine learning repository [11].
Table 1 gives a summary of the datasets we’ve used.

Table 1. Datasets

dataset name # of instances # of attributes # of classes

Vehicle Silhouettes (xaa set) 94 11 4

Zoo 101 16 7

Teaching Assistant Evaluation 151 5 3

Wine Recognition 178 13 3

Glass Identification 214 9 7

Ecoli 336 7 8

Balance Scale Weight & Distance 625 4 3

Yeast 1484 8 10

Below are our numerical results on different datasets. The column ‘mustlk’
represents the sum of numbers of patterns of all the must-link closures and the
column ‘cantlk’ is the sum of numbers of patterns of all the cannot-link closures.
The exact clusters of the datasets are known. So we assign must-link to points
randomly drawn from the same cluster, and cannot-link to points randomly
taken from different clusters. For each dataset, we randomly choose around (15%,
10%), (10%, 7%), (5%, 3%) of its total points as (must-links, cannot-links). The
column ‘metric’ is the distance metric used, with I represents the Euclidean
metric, i.e., Mj’s are the identity matrices, and RCA represents Mj ’s being the
within must-link closure covariance matrix (it is shown in [1] that this metric
gives the best results). If RCA is singular, we omit the row RCA from the table.
For each different combination of ‘mustlk’, ‘cantlk’, and ‘metric’, we run the
k-means algorithm and the concavity cut method both with random-start for
100 times. To avoid bias toward large SSE value, we normalize the values by
dividing them with the initial SSE. We then take average over the 100 runs. For
example, the value under ‘k-means’ on the row ‘Obj’ is

1
100

100∑

i=1

SSE from k-means algorithm at the ith run
SSE from initial partition at the ith run

.

328 Y. Xia

Table 2. Vehicle Dataset

mustlk cantlk metric k-means local min cut

14 10 I
Obj 0.276439 0.258552 0.257897
CPU 0.001200 0.002210 0.536770

10 6 I
Obj 0.243712 0.230685 0.229439
CPU 0.002600 0.003400 0.398770

5 4 I
Obj 0.226040 0.208723 0.208723
CPU 0.002300 0.002800 0.523050

Table 3. Zoo Dataset

mustlk cantlk metric k-means local min cut

15 10 I
Obj 0.248311 0.221239 0.215044
CPU 0.003400 0.006600 0.732250

10 8 I
Obj 0.236324 0.217124 0.214246
CPU 0.005100 0.007000 0.236640

5 4 I
Obj 0.207460 0.199193 0.186251
CPU 0.005410 0.007010 0.227320

Table 4. Teaching Assistant Evaluation Dataset

mustlk cantlk metric k-means local min cut

23 16
RCA

Obj 0.671734 0.657069 0.642726
CPU 0.000700 0.001410 0.302940

I
Obj 0.553348 0.541301 0.524715
CPU 0.000500 0.000800 0.843630

15 10 I
Obj 0.507037 0.496884 0.480044
CPU 0.000700 0.001100 0.136990

8 4 I
Obj 0.485393 0.472041 0.460714
CPU 0.000600 0.001000 0.149910

Table 5. Wine Dataset

mustlk cantlk metric k-means local min cut

27 18
RCA

Obj 0.534966 0.532235 0.532197
CPU 0.002800 0.004510 0.134390

I
Obj 0.197416 0.187645 0.187278
CPU 0.003200 0.005500 0.447840

18 12 I
Obj 0.183942 0.177888 0.172741
CPU 0.005510 0.008310 0.477780

9 6 I
Obj 0.167763 0.150645 0.150578
CPU 0.004110 0.006720 0.227650

Constrained Clustering Via Concavity Cuts 329

Table 6. Glass Dataset

mustlk cantlk metric k-means local min cut

32 22
RCA

Obj 0.108001 0.093677 0.059824
CPU 0.011120 0.017430 0.486090

I
Obj 0.298343 0.270086 0.257363
CPU 0.007310 0.014110 1.825220

21 14
RCA

Obj 0.085489 0.074158 0.033044
CPU 0.015040 0.019840 1.693230

I
Obj 0.301583 0.267343 0.257927
CPU 0.007310 0.013810 1.769340

11 6 I
Obj 0.292819 0.266833 0.249677
CPU 0.007410 0.013010 1.683520

Table 7. Ecoli Dataset

mustlk cantlk metric k-means local min cut

51 34 I
Obj 0.278162 0.270426 0.257343
CPU 0.011120 0.016140 1.706950

34 24 I
Obj 0.266271 0.260423 0.248139
CPU 0.011720 0.015620 0.755080

16 10 I
Obj 0.267482 0.259465 0.248567
CPU 0.011610 0.015520 2.735530

Table 8. Balance Dataset

mustlk cantlk metric k-means local min cut

94 62 I
Obj 0.722311 0.715907 0.711963
CPU 0.005010 0.007620 3.233440

62 44 I
Obj 0.715767 0.711341 0.708332
CPU 0.005300 0.007200 3.393570

31 18 I
Obj 0.708112 0.705248 0.701182
CPU 0.003400 0.005310 3.662360

Table 9. Yeast Dataset

mustlk cantlk metric k-means local min cut

222 148 I
Obj 0.462682 0.455150 0.438204
CPU 0.121190 0.167350 2.363490

150 104 I
Obj 0.450784 0.446078 0.430492
CPU 0.122560 0.157200 2.164910

75 44 I
Obj 0.440515 0.435947 0.424551
CPU 0.129430 0.171610 0.772810

330 Y. Xia

Similarly, the value under ‘local min’ on the row ‘Obj’ is the average normalized
SSE of local minima near the solutions of k-means; the value under ‘cut’ on that
row is the average normalized SSE of the solutions obtained from the concavity
cutting algorithm. The row ‘CPU’ is the average CPU time in seconds for the
three methods.

For all the test problems, our algorithm terminates within 4 seconds. We
observe that the run time of our algorithm is not an inreasing function of the
dataset size.

References

1. Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning
a mahalanobis metric from equivalence constraints. Journal of Machine Learning
Research, 6:937–965, June 2005.

2. Sugato Basu and Ian Davidson. Clustering with constraints: Theory and practice.
Online Proceedings of a KDD tutorial, 2006. http://www.ai.sri.com/˜basu/kdd-
tutorial-2006/.

3. Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In ICML ’04: Proceedings of
the twenty-first international conference on Machine learning, page 11, New York,
NY, USA, 2004. ACM Press.

4. P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained k-means clustering.
Technical Report MSR-TR-2000-65, Microsoft Research, 2000.

5. A. D. Gordon. A survey of constrained classification. Comput. Statist. Data Anal.,
21(1):17–29, 1996.

6. Reiner Horst and Hoang Tuy. Global optimization. Springer-Verlag, Berlin, 1993.
7. Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice Hall

Advanced Reference Series. Prentice Hall Inc., Englewood Cliffs, NJ, 1988.
8. Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,

Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for
k-means clustering. Comput. Geom. Theory Appl., 28(2-3):89–112, 2004.

9. Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From instance-
level constraints to space-level constraints: Making the most of prior knowledge in
data clustering. In ICML, pages 307–314, 2002.

10. Tilman Lange, Martin H. C. Law, Anil K. Jain, and Joachim M. Buhmann. Learn-
ing with constrained and unlabelled data. In CVPR ’05: Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1, pages 731–738, Washington, DC, USA, 2005. IEEE Com-
puter Society.

11. P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Tech-
nical report, University of California, Department of Information and Computer
Science, Irvine, CA, 1994. http://www.ics.uci.edu/˜mlearn/MLRepository.html.

12. H. Tuy. Concave programming under linear constraints. Soviet Mathematics,
5:1437–1440, 1964.

13. Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-
means clustering with background knowledge. In ICML ’01: Proceedings of the
Eighteenth International Conference on Machine Learning, pages 577–584, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

Constrained Clustering Via Concavity Cuts 331

14. Yu Xia and Jiming Peng. A cutting algorithm for the minimum sum-of-squared
error clustering. In Proceedings of the Fifth SIAM International Conference on
Data Mining, pages 150–160, 2005.

15. Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance
metric learning with application to clustering with side-information. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 505–512. MIT Press, Cambridge, MA, 2002.

Bender’s Cuts Guided Large Neighborhood

Search for the Traveling Umpire Problem

Michael A. Trick and Hakan Yildiz

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA USA, 15213

Abstract. This paper introduces the use of Bender’s Cuts to guide a
Large Neighborhood Search to solve the Traveling Umpire Problem, a
sports scheduling problem inspired by the real-life needs of the officials of
a sports league. At each time slot, a Greedy Matching heuristic is used
to construct a schedule. When an infeasibility is recognized Bender’s
cuts are generated, which guides a Large Neighborhood Search to ensure
feasibility and to improve the solution.

1 Introduction

In this paper we consider a hybrid use of Bender’s Cuts, Large Neighborhood
Search and a Greedy Matching Based Heuristic to find good, feasible solutions
to the Traveling Umpire Problem (TUP), a sports scheduling problem briefly
described in the next section. As shown in the subsequent sections, even finding
a feasible solution to the TUP is challenging, making it difficult to find good
solutions in a reasonable amount of time.

The rest of the paper is organized as follows. In Section 1 we formally define
the TUP. Section 3 discusses exact solution approaches. We present the algo-
rithms we used to solve the TUP in Section 4 and 5. Computational results are
given in in Section 6. The conclusion is given in Section 7.

2 Problem Description

Traveling Umpire Problem is a multi-objective sports scheduling problem intro-
duced in [12]. Like the Traveling Tournament Problem for league scheduling,
which was introduced by Easton et al. [3], the TUP is based on the most impor-
tant features of a real sports scheduling problem, the umpires for Major League
Baseball. Although the TUP is originally defined as a multi-objective problem,
in this paper we consider the single objective version of the problem where we
consider is the minimization of the total umpire travel.

TUP extracts the most critical aspects of scheduling the umpires associated
with Major League Baseball. There are 2430 games in Major League Baseball’s
schedule. Each game requires an umpire crew (other sports refer to these as
referees). The “real” umpire scheduling problem consists of dozens of pages of
constraints, including such ideosyncratic constraints as an umpire’s preferred

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 332–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bender’s Cuts Guided Large Neighborhood Search for the TUP 333

vacation dates. TUP limits the constraints to the key issues: no umpire should
be assigned to a team too often in short succession, and every umpire should
be assigned to every team some time in a season. Given these constraints, the
primary objective is to minimize the travel of the umpires.

Formally, given a double round robin tournament, where every team plays
against all other teams twice, on 2n teams (4n − 2 slots), we want to assign one
of n umpires to each game and satisfy the following set of constraints.

Constraints
1) Every game gets an umpire
2) Every umpire works exactly one game per slot
3) Every umpire sees every team at least once at the team’s home
4) No umpire is in a home site more than once in any n-d1 consecutive slots
5) No umpire sees a team more than once in any �n

2 � - d2 consecutive slots

The parameters for the constraints are not chosen arbitrarily. The structural
results regarding the parameters in the constraints are presented in [12].

We present an example of a round robin tournament for 4 teams and a feasible
umpire schedule for d1 = d2 = 0 in Table 2. A game is represented as a pair (i, j)
where i is the home team and j is the away team. Rows correspond to umpire
schedules and columns correspond to games that are played in the corresponding
time slots.

Table 1. Round robin tournament for 4 teams and a feasible umpire schedule for 2
umpires

Slots 1 2 3 4 5 6
Umpire1 (1,3) (3,4) (1,4) (3,1) (4,3) (2,3)
Umpire2 (2,4) (1,2) (3,2) (4,2) (2,1) (4,1)

3 Exact Solution Approaches

TUP has many characteristics in common with the Traveling Salesman Problem
(TSP), due to the emphasis on minimizing travel. But the TSP is solvable exactly
for hundreds or thousands of cities. Does TUP have the same characteristic? If
so, that would limit interest in the problem since real sports leagues rarely go
beyond 30 or so teams.

We formulated the TUP as an Integer Program (IP) and also as a Constraint
Program (CP). The IP formulation is presented in the Appendix. Both of the
approaches become ineffective as the size of the instances grows, particularly
when Constraints 4&5 are more restricting as d1 and d2 become closer to 0.

The results for the IP and CP are given in Table 2 for the smaller instances
at d1 = d2 = 0. The IP can solve the 10 team instance to optimality in more
than 13 hours, whereas CP was unable to solve that instance. We present these
results to demonstrate that the problem becomes very difficult to solve as we

334 M.A. Trick and H. Yildiz

Table 2. IP and CP results for d1 = d2 = 0

Time(sec)
no of Teams Total Distance IP CP

4 5176 0.07 0.02

6 14077 0.27 1.35

8 34311 1.6 869.39

10 48942 47333.7 -

increase the number of teams. Computational results for larger instances are
given in Sect. 5.

4 Greedy Matching Heuristic and a Bender’s Based
Modification

Given the difficulty of the problem, we explore heuristic approaches to find good
solutions. Our methods begin with a simple greedy heuristic which we will then
extend.

Greedy Matching Heuristic (GMH) is a constructive heuristic, which builds
the umpire schedules starting from Slot 1 and ending at Slot 4n − 2. For every
slot t, the heuristic assigns umpires to games such that all constraints, except
Constraint 3, are satisfied and the best possible assignment is made to minimize
the total umpire travel at Slot t. To do that, GMH solves a Perfect Matching
Problem on a Bipartite Graph in every slot t by solving an integer program. The
partitions in this Bipartite Matching Problem are the Umpires and the Games in
slot t. An edge is placed between an umpire u and a game (i, j) if Constraints 4&5
are not violated by assigning u to game (i, j) in slot t, given the assignments from
slot 1 to t−1. Cost of an edge (u, (i, j)) = Distance(k, i)−Incentive(u, i). In this
cost function, k is the venue that u is assigned in slot t − 1 and Distance(k, i)
is the distance between cities k and i. Incentive(u, i) takes a positive value
if umpire u has never visited venue i in the previous slots. This reduction in
distance guides the GMH towards assigning umpires to cities that they have
not visited yet, thus reducing the possibility of having a solution that violates
Constraint 3 at the end of the execution of GMH. If the resulting solution violates
Constraint 3, then the infeasibility is penalized in the objective function during
the course of the Large Neighborhood Search Algorithm, which we explain in
Sect. 5.2.

In practice, the GMH often gets stuck at some time slot because there may
be no feasible perfect matching. In this case, we can identify a set of previous
assignments that are causing this lack of perfect matching. At least one of those
previous assignments must be changed in order to create a perfect matching.
This set of assignments leads to a Logic-Based Bender’s Cut in the terminology
of [6].

While we could add the Bender’s cuts to an integer programming formulation
of this problem, in a standard master/subproblem approach to this problem,

Bender’s Cuts Guided Large Neighborhood Search for the TUP 335

instead we use these cuts to guide a large neighborhood search heuristic. Vio-
lation of Bender’s Cuts is penalized in the objective function with a large cost.
Thus, any changes in the schedule that reduces the the number of violated Ben-
der’s Cuts or reduces total umpire travel is accepted. When a solution that sat-
isfies all the Bender’s Cuts is found, we stop the neighborhood search and solve
the Perfect Matching Problem for slot t again. If there is no feasible matching,
we repeat the process. A high level pseudo code is presented in Algorithm 1.
We explain the generation of Bender’s Cuts and the Large Neighborhood Search
Algorithm in the next section.

Algorithm 1. Greedy Matching Heuristic with Bender’s Cuts Guided Neigh-
borhood Search (GBNS)
1: Arbitrarily assign umpires to games in slot 1
2: for all 1 < t ≤ 4n-2 do
3: Construct a Bipartite Graph G = (V, E) for the Perfect Matching Problem
4: Find a Minimum Cost Perfect Matching on G
5: if there is no feasible perfect matching then
6: Find all Bender’s Cuts
7: Set Objective = (no of violated cuts)∗(violation cost)+(total umpire travel)

8: Set improvement = 1
9: while at least one of the cuts is violated & improvement > 0 do

10: Do neighborhood search using 3-Ump and 3-Slot Neighborhoods
11: if Objective is not improved then
12: improvement = 0
13: end if
14: end while
15: end if
16: end for

5 Bender’s Cuts and Large Neighborhood Search

5.1 Generating Bender’s Cuts

Bender’s Cuts are generated when there is no feasible matching at a slot t during
the course of GMH. Such an infeasibility implies that the partial schedule built
until slot t can not be completed to obtain a feasible solution. We, then, examine
the reasons for this infeasibility and this examination leads to constraints that
exclude a number of partial solutions. Clearly, the Bender’s Cuts generated in
this method are not classical Bender’s Cuts, which are obtained from a linear
subproblem as in traditional Bender’s Decomposition. Instead these cuts are
Logic-Based Bender’s Cuts as defined by Hooker and Ottosson[6], where the
Bender’s Cuts are obtained from inference duals. The difference between the
Logic-Based Bender’s Cuts and classical Bender’s Cuts is that no standard form
exists for the Logic Based Bender’s Cuts and such cuts are generated by logical
inference on the solution of the subproblem. When the subproblem is a feasibility

336 M.A. Trick and H. Yildiz

problem, the inference dual is a condition which, when satisfied, implies that the
master problem is infeasible. This condition can be used to obtain a Bender’s Cut
for cutting off infeasible solutions. Logic Based Bender’s Cuts are a special case of
“nogoods,” a well-known known idea in constraint programming literature, but
they exploit problem structure in a way that nogoods generally do not[2]. Logic-
Based Bender’s Cuts have been successfully used in several studies [5,4,8,9]. In
this section we describe the way we generate Logic Based Bender’s Cuts and
how we use these cuts.

The Bender’s Cuts are generated for any set of Umpires (or Games) whose
adjacency neighborhood has a cardinality less than the cardinality of the set
itself. The adjacency neighborhood N(A) of a set A is the set of nodes that are
adjacent to a node in A. This condition is known as Hall’s Theorem:

Hall’s Theorem: Let G = (V, E) be a bipartite graph with bipartitions X and
Y. Then G has a perfect matching if and only if |N(A)| ≥ |A| for all A ⊆ X

Because of Hall’s theorem, if there is no perfect matching in a time slot, there is
a subset of umpires A whose neighborhood N(A) has cardinality smaller than
|A|. We will generate a constraint that creates at least one edge between A
and Y \ N(A) as follows. For each pair x, y such that x ∈ A and y ∈ Y \
N(A) and (x, y) /∈ E, there exists an already made game-umpire assignment in
previous slots that prevents the edge to be in the matching problem. We find
all such game-umpire assignments for all the missing edges between x ∈ A and
y ∈ Y \ N(A). Then the corresponding Bender’s Cut requires that at least one
of these game-umpire assignments should be changed. To obtain all possible
Bender’s Cuts, we identify Hall sets by checking all subsets of Umpires and
their neighborhoods. For small instances, the number of cuts identified when
an infeasibility occurs is not too many, though for larger problems it would be
necessary to generate only a limited number of cuts.

We present a partial schedule for an example instance for 8 teams and 4
umpires in Table 3. For this instance we assume that d1 = d2 = 0. Thus, the
fourth constraint imposes that an umpire can not visit the same home venue more
than once in any 4 consecutive games. The fifth constraint, on the other hand,
imposes that an umpire can not see a team more than once in any two consecutive
games. For this example the games for the first three slots are scheduled and we
are considering the games in the fourth slot.

The matching problem that corresponds to slot 4 is given in Fig. 1. In this
figure, set A and N(A), the adjacency neighborhood of A, are circled with dashed
lines. The cardinality of A is 4, whereas the cardinality of N(A) is 3. Thus, there
is no feasible perfect matching for this graph.

The way we obtain the Bender’s Cut from set A is best demonstrated with
the help of Fig. 2 and Table 4. The Bender’s Cut states that at least one of the
edges between the nodes in A, the umpires, and the complement of N(A), Game
(2, 1), has to be in the graph. To write this cut in terms of the game-umpire
assignments, we identify the game-umpire assignments in slots 1, 2 and 3, which

Bender’s Cuts Guided Large Neighborhood Search for the TUP 337

Table 3. Partial schedule for 8 teams and 4 umpires. The first three slots are scheduled
and the games for the fourth slot are in consideration for assignment.

Slots 1 2 3 4

Umpire1 (7,5) (2,4) (5,7) (2,1)
Umpire2 (1,8) (3,6) (4,1) (4,5)
Umpire3 (2,6) (1,7) (6,8) (6,3)
Umpire4 (4,3) (5,8) (3,2) (8,7)

Umpire1

Umpire2

Umpire3

Umpire4

(2,1)

(4,5)

(6,3)

(8,7)

Set A

Set N(A)

Fig. 1. Bipartite matching problem for slot 4. The partitions are Umpires and the
Games in slot 4.

prevents the edges being in the graph. For Umpire1, Game (2, 4) in slot 2 is
preventing the edge between Umpire1 and Game (2, 1), because Umpire1 can
not visit venue 2 twice in four consecutive games. Similarly, for Umpire2, Game
(4, 1) in slot 3 is preventing the edge between Umpire2 and Game (2, 1); for
Umpire 3, Game (2, 6) in slot 1 is preventing the edge between Umpire3 and
Game (2, 1); for Umpire4, Game (3, 2) in slot 3 is preventing the edge between
Umpire4 and Game (2, 1). Thus the cut generated is

assigned[1, 2, 2] + assigned[2, 4, 3] + assigned[3, 2, 1] + assigned[4, 3, 3] ≤ 3

where, assigned[u, i, t] =
{

1, if umpire u is at venue i in slot t
0, otherwise.

5.2 Very Large Neighborhood Search

A neighborhood of a solution S is a set of solutions that are in some sense
close to S, i.e., they can be easily computed from S or they share a significant
amount of structure with S. An algorithm that starts at some initial solution
and iteratively moves to solutions in the neighborhood of the current solution is
called a Neighborhood Search Algorithm or a Local Search Algorithm.

338 M.A. Trick and H. Yildiz

Umpire1

Umpire2

Umpire3

Umpire4

(2,1)

Set A

Fig. 2. The missing edges between set A and the complement of N(A). Bender’s Cut
requires at least one of these to be present in the bipartite perfect matching problem.

Table 4. Games that are in conflict with game (2,1) in slot 4 are highlighted

Slots 1 2 3

Umpire1 (7,5) (2,4) (5,7)
Umpire2 (1,8) (3,6) (4,1)
Umpire3 (2,6) (1,7) (6,8)
Umpire4 (4,3) (5,8) (3,2)

The Very Large Neighborhood Search(VLNS) for the TUP tries to improve
the solution quality at each iteration. It is clear that the larger the neighborhood,
the better is the quality of the solutions that can be reached in one single move.
At the same time, the larger the neighborhood, the longer it takes to search the
neighborhood at each iteration.

To make the notion of very large neighborhood clear, we’ll first introduce the
well known 2-exchange neighborhood, which is a small polynomially sized neigh-
borhood. Given an umpire schedule, a 2-exchange move swaps the umpires
assigned to two games played in the same slot t. The neighborhood for this
move is the set of schedules that can be obtained by performing a single move.
We introduce two very large neighborhoods in the following sections. We use
both neighborhoods in our search for a feasible solution with the use of Bender’s
Cuts, when the Greedy Matching Heuristic is unable to assign the games to um-
pires at a slot. Once an initial solution is found, we further use the K-Umpire
Neighborhood to improve that solution. We stop this search when we reach a
local optimum.

K-Umpire Neighborhood: We take the schedules of K ≤ n umpires and
allow exchanges of game assignments within these schedules. The exchanges
of game assignments are allowed only within the same slot, not across slots,
as we need to make sure that Constraints 1&2 are always satisfied. In each

Bender’s Cuts Guided Large Neighborhood Search for the TUP 339

slot, there are K! different ways of assigning games to umpires. Since there are
4n−2 slots, the possible solutions that can be reached by one K-Umpire move is
(K!)4n−2.

The problem of finding the best move is done using the Restricted IP for
K-Umpires(RIP-U) for the TUP with only the games for the K umpires in
consideration. Since this RIP-U is solved many times during the execution of the
algorithm, the solution time should be very low to have the algorithm terminate
in a reasonable amount of time. Since the RIP-U becomes a very hard problem
for K ≥ 4 for even small instances, we take K = 3 and we look at all possible 3
combinations of the n umpires.

K-Slot Neighborhood: We take the games at K ≤ 4n − 2 slots and allow
exchanges of umpire assignments within these slots. The exchanges of umpire
assignments are allowed only within the same slot, not across slots, as we need
to make sure that Constraints 1&2 are always satisfied. In each slot, there are n!
different ways of assigning games to umpires. Since only K slots are considered
at a time, the possible solutions that can be reached by one K-Slot move is
(n!)K .

The problem of finding the best move is done using the Restricted IP for K-
Slots(RIP-S) for the TUP with only the games for the K slots in consideration.
Since this RIP-S is solved many times during the execution of the algorithm, the
solution time should be very low to have the algorithm terminate in a reasonable
amount of time. Since the RIP-S becomes a hard problem as K grows we take
K = 3 and we look at all possible 3 combinations of the 4n − 2 slots.

6 Computational Results

We have tested the solution approaches presented in this paper on a set of TUP
instances. We report these computational results in this section.

6.1 Instance Description

An instance of the TUP has two matrices: The Distance Matrix, which stores
the pairwise distances between cities and the Opponents Matrix, which stores
the tournament information. We have used instances with 4 teams to 32 teams.
The instances with 14 teams or less use the TTP Tournaments as given at
[1]. The instances with more than 14 teams use the distance matrix for the
National Football League given at [1], and the game schedule is generated using
a Constraint Program [11] that creates a round robin tournament. All of the
instances used in this study and additional ones are available at [10].

Depending on the choice of d1 and d2, the difficulty of the problem changes.
Decreasing these parameters makes the problem harder to solve. Choosing a
d1 = n − 1, which makes n − d1 = 1, or a d2 = �n

2 � − 1, which makes �n
2 � -

d2 = 1, simply means that Constraint 4 or Constraint 5 is not in effect.

340 M.A. Trick and H. Yildiz

6.2 Summary of Results

All the algorithms are implemented using the script language in ILOG OPL
Studio 3.7 [7]. We run the algorithms on a Linux Server with Intel(R) Xeon(TM)
3.2 GHz processor.

6.3 Finding a Feasible Solution

As the problem size increases and as the constraints 4 and 5 become more re-
stricting, even finding a feasible solution to the TUP becomes difficult. To find a
feasible solution we used the IP and the GMH with the usage of Bender’s Cut’s
Guided Large Neighborhood Search, which we will refer as GBNS.

Table 5 summarizes the results for IP and GBNS for the instances with 12
and 14 teams. The GBNS approach finds much better solutions much faster in
both instances and all the combinations of the parameters for Constraints 4&5.
For 12 teams instance the GBNS obtains improvements ranging from 3.1% to
23.6% and for 14 teams instance ranging from 4.5% to 38.6% over the IP.

For 14 teams and for the combination of parameters (n−d1, �n
2 � - d2) = (6, 3)

and (n−d1, �n
2 � - d2) = (7, 3) the IP could not find a feasible solution even after

more than 30 hours of execution, whereas GBNS found a solution for each case.
Notice that it takes GBNS only 0.7 seconds to solve this instance for (n−d1, �n

2 �
- d2) = (6, 3), whereas for (n − d1, �n

2 � - d2) = (7, 3), it takes GBNS 7322.9
seconds. This drastic difference in time is due to the fact that the problem
becomes extremely difficult to solve when d1 = d2 = 0.

For 12 teams and for the combination of parameters (n−d1, �n
2 � - d2) = (5, 3)

and (n− d1, �n
2 � - d2) = (6, 3) neither the IP nor the GBNS could find a feasible

solution even after several hours of running. Since the IP was terminated before
concluding to the infeasibility of these cases, we do not currently know if these
two instances are actually feasible or not.

6.4 Improving the Solution with VLNS

We run 3-Umpire Neighborhood Search on the initial solutions obtained by the
IP and the GBNS. While GBNS used this neighborhood in creating the solution,
this was done with costs associated with the Bender’s Cuts. Once a feasible
solution is found, those costs are no longer required. Furthermore, the local
search aspect of GBNS is only applied when there is an infeasibility. So it is
entirely possible that further improvements are possible once GBNS terminates,
and our computational tests bear that out.

Table 6 summarizes the results for IP and GBNS for the instances with 12 and
14 teams. The quality of the initial solution does not make any significant differ-
ence in terms of the quality of the final solution obtained by the neighborhood
search. On the other hand, the total times spent on finding the initial solution
and then running the neighborhood search is significantly less for GBNS, which
is due to the very fast execution of GBNS. In short, the real value of GBNS is
the quick generation of a feasible solution.

Bender’s Cuts Guided Large Neighborhood Search for the TUP 341

Table 5. Comparison of the IP and the Greedy Matching Heuristic with Bender’s
Cuts Guided Neighborhood Search (GBNS) in finding feasible solutions for instances
with 12 teams and 14 teams. The columns consist of the parameter for Constraint 4
(n − d1), the parameter for Constraint 5 (�n

2 � - d2), IP solution cost (IP), time in
seconds, GBNS solution cost (GBNS) and time in seconds, and % cost improvement
of GBNS over IP (% Impr.).

—————–12 Teams—————–
n − d1 �n

2 � - d2 IP time(sec) GBNS time(sec) % Impr.
2 1 95024 7.1 72557 0.1 23.6

3 1 97276 10.4 76407 0.1 21.5

4 1 93762 7.4 76756 0.1 18.1

5 1 93030 19.1 76781 0.0 17.5

6 1 99632 67.3 77818 0.1 21.9

2 2 101055 20.8 88277 0.1 12.6

3 2 102399 46.7 88637 0.1 13.4

4 2 101978 36.8 90231 0.1 11.5

5 2 100641 93.4 91951 0.1 8.6

6 2 100372 134.1 91131 0.1 9.2

2 3 100089 7136.3 95072 359.3 5.0

3 3 100797 1025.3 95072 359.3 5.7

4 3 101063 2194.4 97945 28.6 3.1

5 3 – –

6 3 – –

—————–14 Teams—————–
n − d1 �n

2 � - d2 IP time(sec) GBNS time(sec) % Impr.
2 1 182520 56.5 112142 0.1 38.6

3 1 184069 70.0 117618 0.1 36.1

4 1 180170 42.8 118647 0.1 34.1

5 1 184496 46.6 120781 0.1 34.5

6 1 187357 182.9 121998 0.1 34.9

7 1 182435 196.7 126360 0.0 30.7

2 2 196977 88.4 152658 0.1 22.5

3 2 202383 133.9 153536 0.1 24.1

4 2 199001 194.2 155073 0.1 22.1

5 2 201533 198.7 155525 0.1 22.8

6 2 194975 370.6 157761 0.1 19.1

7 2 206335 621.7 161428 0.1 21.8

2 3 196003 401.4 175884 0.1 10.3

3 3 196394 10085.8 175884 0.1 10.4

4 3 190640 1989.1 182054 0.1 4.5

5 3 205230 2442.9 182746 0.1 11.0

6 3 – 183331 0.7

7 3 – 186979 7322.9

342 M.A. Trick and H. Yildiz

Table 6. Comparison of the 3-Umpire Neighborhood search when started from the
initial solutions found by IP and GBNS for instances with 12 teams and 14 teams.
The columns consist of the parameter for Constraint 4 (n − d1), the parameter for
Constraint 5 (�n

2 � - d2), solution cost when initial solution is found by IP (IP & 3-
Ump), time in seconds, solution cost when initial solution is found by GBNS (GBNS
& 3-Ump) and time in seconds, and % cost improvement obtained when started with
GBNS over when started with IP (% Impr.).

—————–12 Teams—————–
n − d1 �n

2 � - d2 IP & 3-Ump time(sec) GBNS & 3-Ump time(sec) % Impr.
2 1 62515 242.2 62374 192.2 0.2

3 1 66159 408.2 66090 325.4 0.1

4 1 66608 352.5 66897 378.5 -0.4

5 1 68312 466.2 69103 351.5 -1.2

6 1 69445 722.2 69775 759.7 -0.5

2 2 82288 256.9 82188 349.0 0.1

3 2 83095 459.3 83504 245.9 -0.5

4 2 83529 407.5 83974 444.5 -0.5

5 2 85192 541.1 85804 495.4 -0.7

6 2 91865 464.2 91018 279.6 0.9

2 3 95924 7367.3 94080 666.7 1.9

3 3 92672 1578.3 94080 666.7 -1.5

4 3 101047 2573.2 97945 288.5 3.1

5 3 – –

6 3 – –

—————–14 Teams—————–
n − d1 �n

2 � - d2 IP & 3-Ump time(sec) GBNS & 3-Ump time(sec) % Impr.
2 1 95075 894.6 94748 1053.1 0.3

3 1 103854 1451.3 102021 1427.9 1.8

4 1 106243 1874.4 106751 1508.8 -0.5

5 1 109901 1645.8 110896 1307.5 -0.9

6 1 112385 2920.7 111184 1792.6 1.1

7 1 114077 2283.0 117332 1671.9 -2.9

2 2 140855 1789.8 140570 1221.0 0.2

3 2 142334 1157.1 141936 813.9 0.3

4 2 143746 1435.9 144301 910.9 -0.4

5 2 146129 850.9 146964 1400.2 -0.6

6 2 148860 2122.6 148389 2723.9 0.3

7 2 157402 1969.5 161413 950.8 -2.5

2 3 157444 5678.1 157111 3235.5 0.2

3 3 155776 5793.6 157111 3235.5 -0.9

4 3 166345 4754.3 164263 3625.9 1.3

5 3 177480 5762.4 168995 2469.4 4.8

6 3 – 181052 714.0

7 3 – 186979 8005.6

Bender’s Cuts Guided Large Neighborhood Search for the TUP 343

7 Conclusion

In this paper, we introduce a new approach to finding good solutions to the Trav-
eling Umpire Problem. The Traveling Umpire Problem is a highly constrained
scheduling problem and we show that conventional methods are ineffective in
solving large instances to optimality and even find it difficult to find feasible so-
lutions. Our main contribution is to show how to generate Benders cuts during
the execution of a simple Greedy Heuristic. These cuts enforce feasibility re-
quirements that allow the Greedy Heuristic to avoid infeasibilities. This method
enables the simple Greedy Matching Heuristic to produce quality feasible solu-
tions very fast.

We introduce two Very Large Neighborhoods, 3-Umpire and 3-Slot Neigh-
borhoods, to search the solution space for the Traveling Umpire Problem. We
show that by searching these neighborhoods, guided by the Bender’s cuts, we
can obtain an initial feasible solution. Moreover, after finding an initial feasible
solution, we can improve the quality of the solution by searching the 3-Umpire
Neighborhood. Whether the initial solution comes from integer programming or
our GBNS approach, the solution after large-neighborhood search seems to have
the same quality.

References

1. Challenge Traveling Tournament Instances. http://mat.gsia.cmu.edu/TOURN/,
January 2007

2. Dawande, M.W., Hooker, J.N.: Inference-Based Sensitivity Analysis for Mixed In-
teger/Linear Programming. Operations Research 48 (4) (2000) 623–634

3. Easton, K., Nemhauser, G.L., Trick, M.A.: The Traveling Tournament Problem:
Description and Benchmarks. Principal and Practises of Constraint Programming
- CP 2001, Springer Lecture Notes in Computer Science 2239, 580–585

4. Harjunkoski, I., Grossmann, I. E.: Decomposition Techniques for Multistage
Scheduling Problems Using Mixed-integer and Constraint Programming Methods.
Computers and Chemical Engineering 26 (2002) 1533-1552

5. Hooker, J.N.: Planning and Scheduling by Logic-based Benders Decomposition.
Operations Research (to appear)

6. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition, Mathematical
Programming 96 (2003) 33–60

7. ILOG Inc., ILOG OPL Studio 3.7 Language Manual (2003)
8. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP-CP models for a class of

optimization problems, INFORMS Journal on Computing 13 (4) (2001) 258–276
9. Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum

break problem, European Journal of Operational Research 177 (2007) 198–213
10. Traveling Umpire Problem. http://www.andrew.cmu.edu/user/hakanyil/TUP/,

January (2007)
11. Trick, M.A.: Integer and Constraint Programming Approaches for Round Robin

Tournament Scheduling, in PATAT2002, E. Burke and P. Causmaecker (eds),
Springer Lecture Notes in Computer Science 2740 (2003) 63-77.

12. Yildiz, H., Trick, M.: The Traveling Umpire Problem. Invited Talk, Informs Annual
Conference, Pittsburgh, PA, November (2006)

344 M.A. Trick and H. Yildiz

Appendix: IP Formulation

Model Parameters
T = {1,..,2n} is the set of teams
S = {1,..,4n-2} is the set of slots
U = {1,..,n} is the set of umpires

opponents[t,i] =
{

j, if team i plays against team j at venue i in slot t
−j, if team i plays against team j at venue j in slot t

dist[i,j] = distance between venues i and j

Decision Variables

assigned[u, i, t] =
{

1, if umpire u is at venue i in slot t
0, otherwise.

moves[u, i, j, t] =
{

1, if umpire u is at venue i in slot t and moves to j in slot t+1
0, otherwise.

The formulation in the OPL language[7] is as follows:

minimize sum (u in U, i in T, j in T, t in S: t < 4*n-2)
dist[i,j]*moves[u,i,j,t]

subject to

//(1): Every game gets an umpire
forall (i in T, t in S: opponents[t,i] > 0)

sum (u in U) assigned[u,i,t] = 1;

//(2): Every umpire is assigned to exactly one game per slot
forall (u in U, t in S)

sum (i in T: opponents[t,i] > 0)assigned[u,i,t] = 1;

//(3): Every umpire sees every team at least once at the
team’s home forall (u in U, i in T)

sum (t in S: opponents[t,i] > 0) assigned[u,i,t] >= 1;

//(4): No umpire is in a home site more than once in any n-d1
consecutive slots

forall (u in U, i in T, t in S: t <= (4*n-2)-(n-d1-1)
sum (t1 in [0..(n-d1-1)]) assigned[u,i,t+t1] <= 1;

//(5): No umpire sees a team twice in any floor(n/2)-d2
consecutive slots

forall (u in U, i in T, t in S: t <= (4*n-2)-(n/2-d2-1)
sum (t1 in [0..(n/2-d2-1)]) (assigned[u,i,t+t1]
+ sum(k in T: opponents[t+t1,k] = i) assigned[u,k,t+t1])
<= 1;

Bender’s Cuts Guided Large Neighborhood Search for the TUP 345

//(6): Linkage constraints: If umpire u is assigned to i at t
// and to j at t+1, then it should move from i to j

at t.
forall(u in U, i,j in T, t in S: t < 4*n-2)

assigned[u,i,t] + assigned[u,j,t+1] - 1 <= moves[u,i,j,t];

//Additional Valid Inequalities

//(7): If team i plays away in slot t, no umpire can be assigned
to venue i

forall (u in U, i in T, t in S: opponents[t,i] < 0)
assigned[u,i,t] = 0;

//(8): If umpire u moves from i to j in t, it must be assigned to
i in t

//(9): If umpire u moves from i to j in t, it must be assigned to
j in t+1

forall (u in U, i in T, j in T, t in S: t < 4*n-2){
moves[u,i,j,t] <= assigned[u,i,t];
moves[u,i,j,t] <= assigned[u,j,t+1]; };

//(10): # of umpires moving to j at t = # of umpires moving from j
at t+1

forall (u in U, j in T, t in S: t < 4*n-3) {
sum(i in T) moves[u,i,j,t] = sum(i in T) moves[u,j,i,t+1];};

//(11): Every umpire must move in every slot
forall (u in U, t in S: t < 4*n-2)

sum(i in T, j in T) moves[u,i,j,t] = 1;}

A Large Neighborhood Search Heuristic for

Graph Coloring

Michael A. Trick and Hakan Yildiz

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA USA, 15213

Abstract. We propose a new local search heuristic for graph coloring
that searches very large neighborhoods. The heuristic is based on solving
a MAX-CUT problem at each step. While the MAX-CUT problem is
formally hard, fast heuristics that give “good” cuts are available to solve
this. We provide computational results on benchmark instances. The
proposed approach is based on similar heuristics used in computer vision.

1 Introduction

Graph Coloring Problem (GCP) is one of the central problems in graph theory, has
direct applications in practice, and is related to many other problems such as com-
puter register allocation, bandwidth allocation, and timetabling. Given an undi-
rected graph G=(V, E), a coloring f of G is an assignment of a color to each vertex.
A proper (or feasible) coloring is a coloring such that for each edge (i, j) ∈ E, ver-
tices i and j have different colors. A conflict is the situation when two adjacent
vertices have the same color assigned to them. We say that a coloring is improper
(or infeasible) if there exists at least one conflict. The conflict graph of a graph G
is the graph induced by the vertices that are incident to the conflicts in G.

A minimum coloring of G is a feasible coloring with the fewest different colors.
It is well known that graph coloring is a hard combinatorial optimization problem
[12], and exact solutions can be obtained for only small instances [14]. Therefore,
heuristic algorithms are used to solve large instances. In this paper we introduce
a new local search algorithm that searches large neighborhoods, based on ideas
introduced by Boykov et al.[2].

The rest of the paper is organized as follows. In Section 2 we shortly review the
known neighborhood search methods and introduce our very large neighborhood
approach. We describe our algorithm in Section 3 and present the experimental
results in Section 4. The conclusion is given in Section 5.

2 Local Search for Graph Coloring

Local search is based on the concept of a neighborhood. A neighborhood of a
solution S is a set of solutions that are in some sense close to S, i.e., they can be
easily computed from S or they share a significant amount of structure with S.

Local search for the GCP starts at some initial, improper coloring and itera-
tively moves to neighboring solutions, trying to reduce the number of conflicts.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 346–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Large Neighborhood Search Heuristic for Graph Coloring 347

It is clear that the larger the neighborhood, the better is the quality of the so-
lutions that can be reached in one single move. At the same time, the larger the
neighborhood, the longer it takes to search the neighborhood at each iteration.

In this paper, we investigate a new local search method that uses very large
scale neighborhoods. This is one of the first attempts to solve the GCP using
local search in large neighborhoods. The only other large neighborhood searches
we are aware of are due to Chiarandini et al.[5] and Avanthay et al.[1].

To make the notion of large neighborhood clear, we’ll first introduce the well
known 1-exchange and 2-exchange neighborhoods, which are small polynomially
sized neighborhoods. Given a coloring, a 1-exchange move changes the color of
exactly one node and a 2-exchange move swaps the colors of two vertices. The
corresponding neighborhoods for these moves are the set of colorings that can
be obtained by performing a single move.

We consider the neighborhoods proposed by Boykov et al. [2] for energy mini-
mization problems in computer vision, and use these neighborhoods to solve the
GCP. In the following subsections, we formally describe these neighborhoods and
the corresponding moves, which are explained best in terms of partitions. Then
we describe how to find the optimal moves by using graph cuts. The structures
of the graphs, the cuts on these graphs, and the properties of the cuts are also
explained in detail.

2.1 Moves and Neighborhoods

The first neighborhood is the α-β-swap: for a pair of colors {α, β}, this move
exchanges the colors between an arbitrary set of vertices colored α and another
arbitrary set colored β. The second neighborhood we consider is α-expansion:
for a color α, this move assigns the color α to an arbitrary set of vertices.

The GCP can be represented as a partitioning problem, in which a feasible
coloring f corresponds to a partition of the set of vertices into K sets such that
no edge exists between two vertices from the same color class. Let V = {Vl|l ∈ L}
be such a partition, where L is the set of colors and Vl = {v ∈ V |f(v) = l} is
the subset of vertices assigned color l ∈ L.

Given a pair of colors (α, β), a move from a partition V (coloring f) to a new
partition V

′
(coloring f

′
) is called an α-β-swap if Vl = V

′

l for any color l �= α, β.
This means that the only difference between V and V

′
is that some vertices

that were colored α in V are now colored β in V
′
, and some vertices that were

colored β in V are now colored α in V
′
.

Given a color α, a move from a partition V (coloring f) to a new partition
V

′
(coloring f

′
) is called an α-expansion if Vα ⊂ V

′

α and V
′

l ⊆ Vl for any label l
�= α. In other words, an α-expansion move allows any set of vertices to change
their colors to α.

2.2 Size of the Neighborhoods

For an α-β-swap, each vertex either keeps its current color or switches to the
other one. Since each partition has Ω(n) vertices, the possible solutions that can
be reached by one swap move is 2Ω(n).

348 M.A. Trick and H. Yildiz

For an α-expansion, each vertex that is not colored α either keeps its old
color or acquires the new color α. Since there are Ω(n) such vertices, the pos-
sible solutions that can be reached by one expansion move is 2Ω(n). These imply:

Lemma 1. The size of both neighborhoods is 2Ω(n).

2.3 Graph Cuts

The important part of the local search algorithms, which are presented in the
following sections, is efficiently finding the best neighboring solution to the cur-
rent solution by using graph cuts. Let G = (V, E) be a connected and undirected
edge weighted graph. A cut C of G is a minimal subset of E, which increases
the number of connected components by exactly one. The weight (or cost) of a
cut C is the sum of the weights of edges in the cut and is represented by w(C).
A maximum cut (or a maxcut) is then defined as a cut of maximum weight.

2.4 Finding the Optimal Swap Move

Given a coloring f and a pair of colors {α, β}, we want to find a coloring f̂
that minimizes the number of conflicts over all colorings within one α-β-swap
of f . Our technique is based on computing a coloring that corresponds to a
maximum cut on the subgraph Gαβ = (V αβ ,Eαβ), which is a clique over the
vertices colored with α or β in f . For all (i, j) ∈ Eαβ , we assign a weight equal
to one if (i, j) ∈ E and a weight equal to zero if (i, j) /∈ E. The latter ensures
that Gαβ is connected. The structure of the graph Gαβ is illustrated in Fig. 1.

y

i …

x …

j

Fig. 1. An example of Gαβ . The set of vertices are V αβ= Vα ∪ Vβ where Vα = {i, ..., j}
and Vβ = {x, ..., y}. Solid edges are induced edges and have weight 1. Dashed edges
are artificial edges and have weight 0, which ensure that Gαβ is connected.

Every edge, with a weight 1, between the vertices of the same color is a conflict.
Every swap move defines a new bipartition of the vertex set V αβ , possibly with
a different number of conflicts. Notice that every cut in this graph defines a
swap move that results a bipartition of the vertex set, thus a new coloring. In
order to obtain the optimal swap move that results with minimum number of
conflicts, we need to minimize the total weight of edges within the partitions.
Notice that this is equivalent to maximizing the total weight of edges between

A Large Neighborhood Search Heuristic for Graph Coloring 349

the two partitions, which is equivalent to solving a maxcut problem on Gαβ .
After finding a maxcut, the vertices in one partition are going to be colored α,
and the vertices in the other partition will be colored β. The selection of which
partition will be colored α is arbitrary. This implies:

Theorem 1. Let Gαβ be constructed as described above for a given f and {α, β}
and let T be the total weight of edges in Gαβ . A coloring fC corresponding to a
cut C on Gαβ is one α-β-swap away from the initial coloring f . Moreover the
optimal α-β-swap move is equivalent to a maxcut C∗ in Gαβ and the number of
conflicts within Gαβ for the new coloring fC∗

is x if w(C∗) = T − x.

2.5 Finding the Optimal Expansion Move

Given an input coloring f and a color α, we want to find a coloring f̂ that
minimizes the number of conflicts over all colorings within one α-expansion of f .
Our technique is based on computing a coloring that corresponds to a maximum
cut on the graph Gα = (V α,Eα). The structure of this graph is determined by
the current partition V and by the color α, so the graph dynamically changes
after each iteration.

The structure of the graph is illustrated in Fig. 2. The set of vertices include all
vertices v ∈ V . Moreover it includes two terminals α and α, which are auxiliary
vertices representing the color α in consideration and the rest of the colors,
respectively. In addition, we have six types of auxiliary vertices. For each edge
that is incident to two vertices with color α, we create an auxiliary vertex of type
A1. For each edge that is incident to exactly one vertex with color α, we create
an auxiliary vertex of type A2. For each adjacent vertex pair such that neither
vertex in the pair is colored with α, we create two auxiliary vertices of types B1
and B2 if the pair has different colors. If they are colored with the same color,
say γ, we create two vertices of types D1 and D2.

We now explain the way we connect the vertices by edges with different wights.
The weights assigned to these edges are summarized in Table 1. The two ter-
minals are connected by an edge with a very high weight M to ensure that the
maxcut that is found separates the two terminals α and α. Each vertex v ∈ V is
connected by an edge to the terminals α and α. Each pair of adjacent vertices
{i, j} ∈ V is connected by edges to the auxiliary vertices corresponding to that
pair. Each pair of adjacent vertices such that neither of them are colored with α
are connected by an edge. In addition to these, type A1, A2, B1, and D1 vertices
are connected by an edge to the terminal α, and type B2 and D2 vertices are
connected by an edge to the terminal α. As a result, each adjacent vertex pair
and the auxiliary vertices corresponding to the pair and the edges incident to
these vertices form four different structures, which we call as gadgets. The four
different gadgets that correspond to four edge types of the original graph G are
illustrated in Fig. 2. Formally, for an edge (i, j), there are four possible situations
depending on the colors of the vertices incident to those edges:

1. f(i) = f(j) = α
2. f(i) = α, f(j) �= α, or f(i) �= α, f(j) = α

350 M.A. Trick and H. Yildiz

jk
i

f(i)=

¯

ij

kl lm

lk ml

j
f(j)=

k
f(k)=

l
f(l)=

m
f(m)=1

-M-M

-1-1-1

-1-0.5

-1

-0.5-0.5-0.5

0.5 -0.5-0.5

-0.5

M -0.5

-1

Fig. 2. An example of Gα. Dashed edges have weight 0. The type sets for auxiliary
vertices: T={α, α}, A1={ij}, A2={jk}, B1={kl}, B2={lk}, D1={lm}, D2={ml}.

3. f(i) �= α, f(j) �= α, f(i) = f(j)
4. f(i) �= α, f(j) �= α, f(i) �= f(j)

Any cut C on Gα, which separates the two terminals α and α, must include
exactly one of the edges that connect v ∈ V to the terminals. This defines a
natural coloring fC corresponding to a cut C on Gα. Formally,

fC(v) =
{

α, if (v, α) ∈ C
f(v), if (v, α) ∈ C

In other words, a vertex v is assigned color α if the cut C separates v from the
terminal α and, v is assigned its old color f(v) if C separates v from α. Clearly
this implies:

Lemma 2. A coloring fC corresponding to a cut C on Gα, which separates the
two terminals α and α, is one α-expansion away from the initial coloring f .
Also, an α-expansion move is equivalent to a cut C on Gα, which separates the
two terminals α and α.
For each of the four gadgets, a maxcut C on Gα severs some of the edges of
the gadgets, and the sum of the weights of the edges severed is consistent with
whether the corresponding edge (i, j) is a conflict or not in fC .
Property 1. For any maxcut C and for any edge (i, j) ∈ E such that at least
one of i and j is colored with α in f

a) If (α, i), (α, j) ∈ C then either (α, ij) ∈ C or (i, ij), (ij , j) ∈ C
b) If (α, i), (α, j) ∈ C then no other edge from the gadget is in C
c) If (α, i), (α, j) ∈ C then either (i, ij) ∈ C or (α, ij), (ij , j) ∈ C
d) If (α, j), (α, i) ∈ C then either (ij, j) ∈ C or (α, ij), (i, ij) ∈ C

Property 1 follows from the maximality of w(C) and it is illustrated in Fig. 3.

A Large Neighborhood Search Heuristic for Graph Coloring 351

Table 1. The weights assigned to the edges in the graph presented in Fig. 2

edge weight for example(Fig. 2)

(v, α) 0 v ∈ V (i, α),(j, α),(k, α),(l, α),(m, α)

(v, α) −M v ∈ Vα (i, α),(j, α)

(v, α) 0 v ∈ V \Vα (k, α),(l, α),(m, α)

(a, α) −1 a ∈ A1, A2, B1, D1 (ij , α),(jk, α),(kl, α), (lm, α)

(b, α) 0 b ∈ B2 (lk, α)

(c, α) −1 c ∈ D2 (ml, α)

(v, a) −0.5 v ∈ Vα, a ∈ A1 (i, ij), (ij , j)

(v, a) −1 v ∈ V \Vα, a ∈ A2 (jk, k)

(v, a) 0 v ∈ Vα, a ∈ A2 (j, jk)

(v, b) −0.5 v ∈ V \Vα, b ∈ B1, D1, D2 (k, kl),(l, kl),(l, lm),
(l, ml),(m, lm),(m, ml)

(v, b) 0 v ∈ V \Vα, b ∈ B2 (lk, k), (lk, l)

(v, w) 0.5 v, w ∈ V \Vα, f(v) �= f(w) (k, l)

(v, w) 1 v, w ∈ V \Vα, f(v) = f(w) (l, m)

(α, α) M (α, α) (α, α)

In the case that f(i) = f(j) = α , since the weight of the edges that connect i
and j to α has weight −M , the only maxcut possible is one of the cuts described
in Property 1(a). Since both of the cuts separate i and j from α, the colors of i
and j stay unchanged: fC(i) = fC(j) = α. If (α, ij) ∈ C, or if (i, ij), (ij , j) ∈ C
then the cost is −1. In both cases, the cost incurred is truly consistent with the
fact that (i, j) is a conflict in fC .

In the case that one of i and j is colored with α in f , assume w.l.o.g. f(i) = α,
f(j) = β, the possible cuts are the ones described in Property 1 (a) or (c). The
cuts that sever (i, α) are not possible since the weight of (i, α) is −M . The cost
of the cuts having Property 1(a) is −1, which is consistent with the fact that
(i, j) is a conflict in fC . The cost of the cuts having Property 1(c) is 0, which is
consistent with the fact that (i, j) is not a conflict in fC .

Property 2. For any maxcut C and for any edge (k, l) ∈ E such that f(k) �=
α, f(l) �= α:

a) If (α, k), (α, l) ∈ C then either (α, kl) ∈ C or (k, kl), (kl, l) ∈ C
b) If (α, k), (α, l) ∈ C then either (α, lk) ∈ C or (k, lk), (lk, l) ∈ C
c) If (α, k), (α, l) ∈ C then (k, kl), (lk, l) ∈ C
d) If (α, l), (α, k) ∈ C then (k, lk), (kl, l) ∈ C

Property 2 follows from the maximality of w(C) and from the fact that no
subset of C is a cut. Property 2 is illustrated in Fig. 4.

In the case that f(k) = f(l) = β, all the cuts described in Property 2 are
possible. The cost of the cuts that have Property 2(a) or (b) is −1, which is
consistent with the fact that (k, l) is a conflict in fC in both cases. The cost of
the cuts that have Property 2(c) or (d) is 0, which is consistent with the fact
that (k, l) is not a conflict in fC in either case, since the color of exactly one of
k, l is changed to α.

352 M.A. Trick and H. Yildiz

i
j

¯

i

¯ ¯

cut

cut

cut

cut

c
u
t

i ij jji
j

i
j

Property 1(a) Property 1(b) Property 1(c,d)

Fig. 3. Properties of a maxcut C on Gα for two vertices i,j ∈ V such that at least one
of them is colored with α

In the case that f(k) = β, f(l) = γ, all the cuts described in Property 2 are
possible. The cost of the cuts that have Property 2(a) is −1, which is consistent
with the fact that (k, l) is a conflict in fC . The cost of the cuts that have Property
2(b), (c) or (d) is 0, which is consistent with the fact that (k, l) is not a conflict
in fC in those cases, since the color of at least one of k, l is not changed to α.
Lemma 2, Property 1 and Property 2 implies:

Theorem 2. A coloring fC∗
corresponding to a maxcut C∗ on Gα is one α-

expansion away from the initial coloring f . Moreover the optimal α-expansion
move is equivalent to a maxcut C∗ in Gα and the number of conflicts for the
new coloring fC∗

is x if w(C∗) = M − x.

3 Algorithms

In this section we first introduce swap-move, check-bipartite and expansion-move
algorithms. These three algorithms are used as subroutines in the expansion-
swap algorithm, which is the main algorithm.

3.1 Swap-Move Algorithm

Input: A coloring f of G with K colors.

1. Set Success:=0, Any Imp(swap):=0
2. Set Improvement(swap):= 0
3. For each pair of colors {α, β} ⊂ L

3.1 Find f̂ that minimizes the number of conflicts among all possible new
colorings within one α-β-swap of f

3.2 IF the number of conflicts is reduced, f := f̂ , Improvement(swap):=1,
Any Imp(swap):=1

A Large Neighborhood Search Heuristic for Graph Coloring 353

¯

k
l

l
k

k

¯

k
l

l
k

¯

k
l

l
k

cut

cut

cut

cut

cut

Property 2(a) Property 2(b) Property 2(c,d)

kl ll k

Fig. 4. Properties of a maxcut C on Gα for two vertices k,l ∈ V such that none of
them is colored with α

4. IF f has no conflicts, return f with Success := K
5. IF Improvement(swap) = 1, goto 2
6. Return f with Success:= 0 & Any Imp(swap).

3.2 Expansion-Move Algorithm

Input: A coloring f of G with K colors.

1. Success:=0, Any Imp(expansion):=0
2. Set Improvement(expansion):= 0
3. For each color α ∈ L

3.1 Find f̂ that minimizes the number of conflicts among all possible new
colorings within one α-expansion of f

3.2 IF the number of conflicts is reduced, f := f̂ , Improvement(expansion):=1,
Any Imp(expansion):=1

4. IF f has no conflicts, return f with Success:= K & Any Imp(expansion)
5. IF Improvement(expansion)= 1, goto 2
6. Return f with Success:= 0 & Any Imp(expansion).

3.3 Check-Bipartite Algorithm

If the conflict graph of an infeasible coloring f of G with K colors is bipartite,
one can remove all conflicts without creating new conflicts and end up with a
feasible K +1 coloring by coloring the vertices of one partition with a new color
K + 1. A short algorithm based on this observation is given below.
Input: A coloring f of G with K colors.

354 M.A. Trick and H. Yildiz

1. If f has conflicts, let G
′
= (V

′
,E

′
) be the subgraph induced by the conflicting

vertices
1.1 Starting from an arbitrary source vertex, color the vertices and their

neighbors in alternation with colors α and β.
1.2 If the resulting coloring is proper, then G

′
is bipartite. Introduce a new

color K+1 to color the vertices in one partition, return f with Success:=
K + 1.

3.4 Expansion-Swap Algorithm

Expansion-swap is the main algorithm that takes advantage of both neighbor-
hoods introduced and uses the swap-move, check-bipartite and expansion-move
algorithms as subroutines. Namely, when the swap-move no longer improves the
current solution, expansion-move tries to improve the current solution without
starting from scratch. When expansion-move is unable to improve the solution,
swap-move starts running again. When neither algorithm is able to improve the
solution, first we check if the conflict graph is bipartite with the Check-bipartite
algorithm. If it is not bipartite, then at Step 8, a new color K + 1 is intro-
duced by finding f̂ that minimizes the number of conflicts among f

′
within one

(K + 1)-expansion of f .
Introducing a new color by an expansion move is a better approach than in-

troducing it by finding an independent set on the conflict graph, since expansion
allows for the creation of new conflicts in exchange for removing more current
conflicts. However in the independent set case, coloring adjacent vertices with
the new color is not permitted. This is easy to see when we assume that the con-
flict graph is a dense graph, such as a clique, where the maximum independent
set is only one vertex.

Introducing the new color K + 1 will definitely improve the solution if not
actually remove all the conflicts. After this improvement, the swap-move phase
will search for a better solution, and the whole cycle repeats until a feasible
coloring is found.

Input: A graph G and an initial number of colors K.

1. Randomly color G with K colors, resulting in coloring f
2. Swap-move(G, f , K)
3. IF Success = 0, Expansion-move(G, f , K)
4. IF Success > 0 return f

5. IF Any Imp(expansion) = 1, Swap-move(G, f , K); ELSE goto 7
6. IF Success > 0 return f ;

ELSE IF Success = 0 & Any Imp(swap) = 1, goto 3
7. Check-bipartite(G, f , K)
8. IF Success = 0, find f̂ that minimizes the number of conflicts among all

possible new colorings within one (K + 1)-expansion of f , set f := f̂

9. IF f has no conflicts, return f with Success := K +1; ELSE set K := K +1,
goto 2.

A Large Neighborhood Search Heuristic for Graph Coloring 355

3.5 Finding a Maximum Cut

Given an undirected graph G with edge weights, the MAX-CUT problem consists
of finding a maxcut of G. MAX-CUT is a well-known NP-Hard problem[12].
Since all our algorithms rely on solving MAX-CUT problems several times, the
solution times for our algorithms can be expected to be out of our limits for a
local search heuristic. So rather than determining the maxcut at each move, we
can find a “good” cut, which has a weight that is close to the weight of a maxcut.
This allows us to search the introduced neighborhood approximately and fast.
However, since Theorem 2 is dependent on the cut found being a maxcut, we can
not use the total weight of the cut found to calculate the number of conflicts.
But notice that we can still use any cut to find a new coloring as Lemma 2 holds
for any cut. For this reason, we use the cut obtained to define the new coloring
and we calculate the actual number of conflicts by checking the adjacency matrix
and the new coloring.

There are many heuristic and approximation algorithms that have been com-
putationally tested and/or with theoretical performance guarantee. Goemans
and Williamson [13] proposed a randomized algorithm that uses semidefinite
programming to achieve a performance guarantee of 0.87856. More recent al-
gorithms for solving the semidefinite programming relaxation are particularly
efficient, because they exploit the structure of the MAX-CUT problem. Burer,
Monteiro, and Zhang [4] proposed a rank-2 relaxation heuristic for MAX-CUT
and described a computer code, called Circut [7], that produces better solutions
in practice than the randomized algorithm of Goemans and Williamson. Circut
does not assume the edge weights are positive. This property is necessary for
our algorithm as the graphs created by our algorithm have edges with negative
weights. Moreover, since the performance of Circut on many different problems
has been shown to be very good, and the code is available for outside use, we
decided to use Circut to solve MAX-CUT problems in our algorithms.

4 Experimental Results

4.1 Implementation Details

Our algorithm is implemented in C. Since the MAX-CUT solver code, Circut,
is implemented in Fortran90, the input/output transaction between the main
code and Circut is made through text files. For large size problems, writing into
and reading from files takes very long times. This becomes a serious issue es-
pecially for the expansion graphs created for the expansion move since the size
of the expansion graphs are much larger than the original graph. To overcome
this disadvantage, we used the following strategy for large graphs: Expansion
moves were only used for introducing a new color when swap-move is stuck with
the current solution. We introduce the new color by finding the best expansion
move on the conflict graph rather than the original graph, since the color of non-
conflicting vertices do not change during an expansion move. The conflict graph

356 M.A. Trick and H. Yildiz

is smaller than the original graph in almost all cases, and becomes smaller as
the number of conflicts is reduced during the execution of the algorithm. This
observation made it possible for us, not fully but at least partially, to use the
expansion move idea for large instances.

In addition to the modification described above, we have made two more
changes in the original expansion-swap algorithm in order to decrease the exe-
cution time: First, we use the simple 1-exchange moves after Step 5 and Step 9
of the expansion-swap algorithm. Second, after introducing a new color at Step
9, we have looked at the best swap moves only between the new color and the
old ones, but not between all the old colors.

4.2 Summary of Results

We run the expansion-swap algorithm on a 450 MHz Sun UltraSPARC-II work-
station with 1024MB of RAM. We tested our algorithms on some of the bench-
mark instances proposed for COLOR02/03/04 [8].

Table 2 and Table 2 compare the results of the Expansion-Swap algorithm(ES)
to the results of the heuristics proposed by Croitoru et al.(CL)[9], Galinier et
al.(GH)[11], Bui and Patel(BP)[3], Phan and Skiena(PS)[15], Chiarandini and
Stuetzle(CS)[6]. These results are summarized in [8]. Not all heuristics reported
their results for all instances. Thus many cells in the table are empty.

Of the 68 test instances solved with the Expansion-Swap Algorithm, there
are 18 instances with reported chromatic numbers [8]. Of these 18 instances our
algorithm found the optimal solution for 10 of them.

The results of the ES algorithm for 32 instances are either equal to the optimal
solution, or as good as the best result found by other heuristics listed. The
results of ES for these instances are highlighted in bold in Tables 2 and 2. For
15 instances, ES either could not find the optimal solution or at least one of the
other heuristics obtained a better solution. For 14 instances, ES obtained the
worst results. And for the remaining 7 instances, we cannot make a comparison
as we only have the results of ES but we see that these results are only one more
than the clique number of 4 of these 7 instances.

In terms of instance types, we can say that our algorithm performed very
well on myciel and FullIns instances, and on school1-nsh and mugg100-25. It
also has a good performance on all other graphs except DSJ instances and latin-
square-10. For DSJ and latin-square, the quality of the solutions are not as good,
especially for the large and dense instances.

In terms of solution times, 16 instances are solved in less than 1 second, 39
instances are solved in more than 1 second but in less than 1 minute, 5 instances
are solved in more than 1 minute but less than 4 minutes, 4 instances are solved
in more than 4 minutes but in less than 8 minutes, and the remaining 4 instances
are solved in more than 8 minutes but in less than 16 minutes.

Figure 5 presents the relationship of the solution time with the density of the
graphs. As one would expect, the hardest instances are those with high density,
though this does not fully explain the heuristic’s running time since some high
density instances can be solved quickly.

A Large Neighborhood Search Heuristic for Graph Coloring 357

Table 2. Comparison of the results of the expansion-swap(ES) algorithm to the results
of other heuristics. The columns in the table consist of the name of the graph, number
of vertices (n), number of edges (m), density of the graph (d), clique number (cl),
optimum solution(OPT), lower bound(LB), results due to (CL), (GH), (BP), (PS),
(CS), results for expansion-swap (ES) algorithm, and time in seconds for ES (time).

Graph n m d cl. OPT LB CL GH BP PS CS ES time
le450 5a.col 450 5714 6% 5 5 5 5 14 5 3.6
le450 5b.col 450 5734 6% 5 5 5 5 13 5 8.6
le450 5c.col 450 9803 10% 5 5 4.2
le450 5d.col 450 9757 10% 5 5 5 16 5 4.1
le450 15a.col 450 8168 8% 15 15 18 15 23 15 18 51.2
le450 15b.col 450 8169 8% 15 15 15 18 15 23 15 18 46.4
le450 15c.col 450 16680 17% 15 15 27 15 32 16 25 90.8
le450 15d.col 450 16750 17% 15 9 15 31 16 26 36.5
le450 25a.col 450 8260 8% 25 26 21.3
le450 25b.col 450 8263 8% 25 26 19.8
le450 25c.col 450 17343 17% 25 25 26 36 26 32 29.3
le450 25d.col 450 17425 17% 25 13 26 37 26 31 100.9
queen8 8.col 64 728 36% 9 9 9 10 7.2
queen8 12.col 96 1368 30% 12 13 4.5
queen9 9.col 81 2112 65% 10 10 11 12.2

queen10 10.col 100 2940 59% 13 3.5
queen11 11.col 121 3960 55% 11 12 14 4.5
queen12 12.col 144 5192 50% 15 12.8
queen13 13.col 169 6656 47% 13 14 14 16 107.9
queen14 14.col 196 8372 44% 17 75.9
queen15 15.col 225 10360 41% 17 19 9.9
queen16 16.col 256 12640 39% 21 18 19 30.0

myciel5.col 47 236 22% 6 6 0.5
myciel6.col 95 755 17% 7 7 7 0.9
myciel7.col 191 2360 13% 8 8 8 1.4

1-Insertions 4.col 67 232 10% 4 4 4 4 5 0.4
1-Insertions 5.col 202 1227 6% 4 6 6 6 0.9
1-Insertions 6.col 607 6337 3% 7 15 7 5.1
2-Insertions 3.col 37 72 11% 4 4 0.2
2-Insertions 4.col 149 541 5% 4 4 4 5 4 5 5 5 0.4
2-Insertions 5.col 597 3936 2% 4 6 11 6 4.2
3-Insertions 3.col 56 110 7% 4 4 0.2
3-Insertions 4.col 281 1046 3% 3 5 5 5 5 1.2
3-Insertions 5.col 1406 9695 1% 6 29 6 6 35.4
4-Insertions 3.col 79 156 5% 3 3 4 4 0.2
4-Insertions 4.col 475 1795 2% 3 7 5 2.3
1-FullIns 3.col 30 100 23% 4 4 4 4 4 0.2
1-FullIns 4.col 93 593 14% 5 5 5 5 5 0.4
1-FullIns 5.col 282 3247 8% 6 6 6 6 7 6 1.1
2-FullIns 3.col 52 201 15% 5 5 5 5 0.3

358 M.A. Trick and H. Yildiz

Table 2. (continued)

e

Graph n m d cl. OPT LB CL GH BP PS CS ES time
2-FullIns 4.col 212 1621 7% 5 6 7 6 0.7
2-FullIns 5.col 852 12201 3% 6 7 23 7 9.1
3-FullIns 3.col 80 346 11% 5 5 6 6 0.4
3-FullIns 4.col 405 3524 4% 6 7 11 7 7 4.6
3-FullIns 5.col 2030 33751 2% 6 8 59 8 8 53.7
4-FullIns 3.col 114 541 8% 7 7 7 7 7 1.0
4-FullIns 4.col 690 6650 3% 7 8 19 8 7.6
4-FullIns 5.col 4146 77305 1% 9 9 11 325.0
5-FullIns 3.col 154 792 7% 8 8 8 8 8 2.2
5-FullIns 4.col 1085 11395 2% 27 10 11.8
DSJC125.1.col 125 736 9% 5 5 5 5 7 6 1.0
DSJC125.5.col 125 3891 50% 12 12 20 18 21 21 11.8
DSJC125.9.col 125 6961 90% 27 30 42 46 48 50.2
DSJC250.1.col 250 3218 10% 8 8 9 10 3.3
DSJC250.5.col 250 15668 50% 13 37 22 28 36 46.9
DSJC250.9.col 250 27897 90% 35 72 79 82 230.4
DSJC500.1.col 500 12458 10% 6 16 12 20 12 15 42.0
DSJC500.5.col 500 62624 50% 16 66 48 51 50 61 256.7
DSJC500.9.col 500 112437 90% 35 42 126 127 156 838.3
DSJR500.1.col 500 3555 3% 12 12 12 12 12 5.3
DSJR500.1c.col 500 121275 97% 63 63 63 56 105 94 418.1
DSJR500.5.col 500 58862 47% 26 26 26 129 155 124 143 474.2
DSJC1000.1.col 1000 49629 10% 6 20 41 26 50.5
DSJC1000.5.col 1000 249826 50% 17 84 111 793.4
DSJC1000.9.col 1000 449449 90% 37 54 224 289 796.6
latin sq 10.col 900 307350 76% 101 99 123 901.5
school1 nsh.col 352 14612 24% 14 14 14 14 33 14 29.3
mugg100 25.col 100 166 3% 4 4 0.3

5 Conclusion

We studied a new local search algorithm using two very large-scale neighbor-
hoods for the GCP. The first type of move allows us to swap the colors of sets
of vertices. The second type of move allows any set of vertices to change their
colors to a particular color. The algorithm proposed combines these two types
of moves.

The key part of the algorithm is efficiently finding the best neighboring so-
lution to the current solution by solving a MAX-CUT problem. Since MAX-
CUT is a hard problem, we considered approximate algorithms that are able
to find “good” solutions very fast. It is important to note that the success of
the algorithms presented in this paper hinges on fast algorithms that can solve
MAX-CUT problems optimally or approximately.

This study is one of the first attempts to solve the GCP using local search
in very large neighborhoods. Although we could not fully take advantage of the

A Large Neighborhood Search Heuristic for Graph Coloring 359

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

Instances in increasing density

T
im

e
(s

e
c

)

Fig. 5. The x-axis is the ordered list of 68 instances solved. The instances are ordered
in ascending order of density. Instance number 1 is the least dense and instance number
68 is the most. The y-axis is the solution time.

neighborhoods by solving the MAX-CUT problems optimally, the results we
present here are promising. However, further research efforts are still required to
make large scale neighborhood techniques fully competitive.

One possible extension is to use exact or better approximate algorithms and
to fully integrate them with the main code to solve the MAX-CUT problems.
Another one is to investigate if a best-improvement variant of the Expansion-
Swap algorithm would perform better than the current first-improvement search
approach we use. That is instead of accepting the first improving move, using
the move that gives the best improvement in conflicts.

References

1. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151 (2003) 379–388.

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11) (2001) 1222–1239

3. Bui, T.N., Patel, C.M.: An Ant System Algorithm for Coloring Graphs. In D.S.
Johnson, A. Mehrotra, and M. Trick, editors, Pro- ceedings of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, NY (2002)

4. Burer, S., Monteiro, R.D.C., Zhang T.: Rank-two relaxation heuristics for MAX-
CUT and other binary quadratic programs. SIAM Journal on Optimization, 12
(2001) 503-521

360 M.A. Trick and H. Yildiz

5. Chiarandini, M., Dumitrescu, I., Stuetzle, T.: Local search for the colouring graph
problem. A computational study. Technical Report AIDA-03-01, FG Intellektik,
TU Darmstadt (2003)

6. Chiarandini, M., Stuetzle, T.: An application of Iterated Local Search to Graph
Coloring Problem. In D. S. Johnson, A. Mehrotra, M. Trick, editors, Proceedings of
the Computational Symposium on Graph Coloring and its Generalizations, Ithaca,
NY (2002)

7. CirCut: A Fortran 90 Code for Max-Cut, Max-Bisection and More.
http://www.caam.rice.edu/ zhang/circut/

8. COLOR02/03/04: Graph Coloring and its Generalizations.
http://mat.gsia.cmu.edu/COLOR04

9. Croitoru, C., Luchian, H., Gheorghies, O., Apetrei, A.: A New Genetic Graph
Coloring Heuristic. In D. S. Johnson, A. Mehrotra, M. Trick, editors, Proceedings of
the Computational Symposium on Graph Coloring and its Generalizations, Ithaca,
NY (2002)

10. Galinier, P., Hertz, A.: A Survey of Local Search Methods for Graph Coloring.
Computers & Operations Research 33 (2006) 2547–2562.

11. Galinier, P., Hertz, A., Zufferey, N.: Adaptive Memory Algorithms for Graph Col-
oring. In D.S. Johnson, A. Mehrotra, M. Trick, editors, Proceedings of the Compu-
tational Symposium on Graph Coloring and its Generalizations, Ithaca, NY (2002)

12. Garey, M.R., Johnson, D.S.:Computers and Interactibility: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, USA, (1979).

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
ACM 42 (1995) 1115-1145.

14. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. IN-
FORMS Journal On Computing 8(4) (1996) 344-354

15. Phan, V., Skiena, S.: Coloring Graphs With a General Heuristic Search Engine. In
D.S. Johnson, A. Mehrotra, M. Trick, editors, Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, NY (2002)

16. Thompson, P.M, Psaraftis, H.N.: Cyclic transfer algorithms for multivehicle routing
and scheduling problems. Operations Research 41 (1993) 70-79

Generalizations of the Global Cardinality

Constraint for Hierarchical Resources

Alessandro Zanarini and Gilles Pesant

Département de génie informatique
École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville
Montreal, Canada H3C 3A7

{azanarini,pesant}@crt.umontreal.ca

Abstract. We propose generalizations of the Global Cardinality Con-
straint (gcc) in which a partition of the variables is given. In the context
of resource allocation problems, such constraints allow the expression of
requirements, in terms of lower and upper bounds, for resources with dif-
ferent capabilities. Alternate models using gcc’s are shown to be weaker.
We present filtering algorithms based on flow theory that achieve do-
main consistency and give experimental evidence of the usefulness of
such constraints. We consider an optimization version of the constraints
and discuss its relationship with the cost gcc.

1 Introduction

Resource allocation problems occur in many real-life problems whenever it is
necessary to assign resources to tasks that need to be accomplished. It can be
thought of as a one to one assignment or, more generally, a many to one relation
in which tasks can be assigned one or more resources. Typically, for each task a
minimum and maximum number of required resources is defined. Resources may
be homogeneous in the sense that they have identical capabilities or skills. In
Constraint Programming, problems with homogeneous resources can be easily
modeled by a Global Cardinality Constraint [6] (gcc) in which each resource is
represented by a variable whose domain is the set of tasks and each task defines
its resource requirements through the bounds on the number of occurrences in
the definition of the constraint. However for some real-world problems this sce-
nario is too simplistic: resources are heterogeneous and tasks require resources
with different capabilities or skill levels. We further distinguish three cases: in the
first, referred to as disjoint heterogeneous resources, the different skill levels are
considered independently i.e. a resource with a given skill level can only satisfy
requirements defined on this level; in the second, referred to as nested heteroge-
neous resources, resources are organized in a total order, that is, a resource with
skill level � is able to satisfy requirements of level � or below; in the third, which
we call hierarchical heterogeneous resources, the relationship between resources
generalizes beyond the linear order of the nested case to a tree-like hierarchy.

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 361–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

362 A. Zanarini and G. Pesant

Problems with disjoint heterogeneous resources are also easily modeled, this
time using a set of gcc’s, each of them representing a single skill level as before,
and domain consistency can still be achieved. Unfortunately a similar model for
the nested and hierarchical cases does not guarantee domain consistency. This
paper focuses on the important cases of nested and hierarchical heterogeneous re-
sources for which we propose generalizations of the global cardinality constraint
that achieve domain consistency.

Example 1. We need to accomplish two tasks T 1 and T 2 that have different
requirements of resources of level 1 and 2. Three resources R1

1, R
1
2, R

1
3 of level

1 and three resources R2
1, R

2
2, R

2
3 of level 2 are available. Each resource can be

assigned to any task. Both tasks T 1 and T 2 need between 1 and 2 resources
of level 2, and between 2 and 3 resources of level 1. In a disjoint heterogeneous
resources setting, resources can only satisfy requirements of their level. Since the
tasks need at least 4 resources of level 1 the problem is unsatisfiable. In a nested
heterogeneous resources setting, resources can satisfy requirements of their level
or below. The minimum requirements of resources of level 2 is equal to 2 (one for
each task). Then, one resource of level 2 can be assigned to a task for satisfying
the requirements of level 1. Thus, the problem is satisfiable.

Note that in the case of nested heterogeneous resources the problem can be
restated as follows: both tasks T 1 and T 2 need respectively between 3 and 5
resources of level 1 or higher, and among them 1 or 2 must be of level 2.

The initial motivation for this work came from a real-life manpower planning and
scheduling problem proposed in [8] by France Telecom for the 2007 ROADEF
Challenge. A subproblem consists of forming teams of technicians that have
to accomplish a set of tasks. The technicians have different skill levels and a
technician can satisfy task requirements of his level or below. Each task de-
fines the minimum number of technicians required for each skill level. This cor-
responds exactly to nested heterogeneous resources. Another important appli-
cation area is nurse rostering. Here a minimum number of nurses on duty is
specified for each work shift and sometimes a minimum is also given for senior
nurses acting in a supervisory role but who can perform the duties of regular
nurses as well. Applications of hierarchical heterogeneous resources are found in
the computer software industry or generally in large projects with multiskilled
resources.

The paper is organized as follows: Section 2 gives a brief background of Con-
straint Programming and Network Flows that will be used in the following sec-
tions. In Section 3, we formally introduce the nested gcc, its graph representa-
tion as well as the theoretical basis for achieving domain consistency. Section 4
is dedicated to a generalization of the nested gcc called hierarchical gcc. In
Section 5 we show experimental evidence of the usefulness of the presented con-
straints. Section 6 considers an optimization version of nested gcc that allows
the expression of preferences. Finally, conclusions are drawn in Section 7.

Generalizations of the Global Cardinality Constraint 363

2 Preliminaries

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {x1, x2, . . . , xn} with finite domains D = {D1, D2, . . . , Dn} such that
xi ∈ Di for all i, together with a finite set of constraints C, each on a subset of
X . A constraint C ∈ C is a subset T (C) of the Cartesian product of the domains
of the variables that are in C. We write X(C) to denote the set of variables
involved in C and we call tuple τ ∈ T (C) an allowed combination of values of
X(C). Given a set of variables X ′ ⊆ X(C), τ ↓X′ is the projection of the tuple τ
over the set X ′. The number of occurrences of a value d in a tuple τ is denoted by
#(d, τ); analogously #(d, τ ↓X′) is the number of occurrences of d in the projec-
tion of the tuple τ over the set X ′. An assignment (d1, . . . , dk) ∈ X(C) satisfies
a constraint C if it belongs to T (C). A solution to a CSP is an assignment of all
the variables such that it satisfies all the constraints.

In Constraint Programming (see [2]), the solution process consists of iter-
atively interleaving search phases and propagation phases. During the search
phase all the combinations of values are evaluated. It is generally performed on
a tree-like structure and each step consists of instantiating a variable to a value of
its domain. In order to avoid the systematic generation of all the combinations
and reduce the search space, the propagation phase shrinks the search space:
each constraint propagation algorithm removes values that a priori cannot be
part of a solution w.r.t. the partial assignment built so far. The propagation
can be eventually performed an exponential number of times thus it needs to be
efficient and effective. In order to be effective, each constraint filtering algorithm
should remove as many variable domain values as possible and possibly achieve
domain consistency (also referred to as hyper-arc consistency or generalized-arc
consistency).

Definition 1 (Domain Consistency). Given a constraint C defined on the
variable set x1, . . . , xn with respective domains D1, . . . , Dn, the constraint is do-
main consistent iff for each variable xi and each value di ∈ Di there exists a
value dj ∈ Dj for all j �= i such that (d1, . . . , dn) ∈ T (C).

2.2 Network Flows

In this section we recall the main results and definitions that will be used in
the following sections (see [1] for further explanations). An oriented graph is
defined as G = (V, A) where V is a set of vertices and A is a set of ordered
pairs (arcs) from V . We write δout(v) to refer to the set of outgoing arcs of v:
δout(v) = {(v, u) |(v, u) ∈ A}. Similarly, the set of ingoing arcs of v is denoted by
δin(v) = {(u, v) | (u, v) ∈ A}. An oriented path in a oriented graph G = (V, A) is
a sequence of vertices v0, v1, . . . , vk such that (vi, vi+1) ∈ A with i = 0, . . . , k−1.
An oriented graph is called strongly connected iff for each ordered pair (u, v)
of vertices there exists an oriented path from u and v. A strongly connected

364 A. Zanarini and G. Pesant

component of an oriented graph G = (V, A) is a strongly connected subgraph G′

of G such that no other strongly connected subgraph of G contains G′.
Let G = (V, A) be an oriented graph, l(a) and c(a) the demand and the

capacity of each arc a ∈ A (0 ≤ l(a) ≤ c(a)). We define an s-t flow as a function
f : A → R such that:

∀v ∈ V \ {s, t} :
∑

a∈δout(v)

f(a) =
∑

a∈δin(v)

f(a)

where s and t are respectively source and sink of the flow. The flow is feasible
if ∀a ∈ A : l(a) ≤ f(a) ≤ c(a). The value of a flow f is defined as value(f) =∑

{a∈δout(s)} f(a)−
∑

{a∈δin(s)} f(a). A feasible flow f is maximum if there is no
other feasible flow f ′ such that value(f ′) > value(f).

Theorem 1. If all arc demands and capacities are integer and there exists a
feasible flow then the maximum flow problem has an integer maximum flow.

Given a flow f on a graph G = (V, A), the residual graph is defined as Gf =
(V, Af) where Af = {(u, v) ∈ A : f((u, v)) < c((u, v))}

⋃
{(v, u) : (u, v) ∈

A, l((u, v)) < f((v, u))}.

3 Nested Global Cardinality Constraint

Let {Xk}1≤k≤� represent a family of � disjoint sets of variables. Define further
X

k =
⋃

k≤j≤� Xj, with X = X
1 for short. Observe that this new family of sets

is nested: X
� ⊆ X

�−1 ⊆ · · · ⊆ X
1. The variables Xk = {xk

1 , . . . , xk
nk

} are defined
over the domains Dk

1 , . . . , Dk
nk

. We write DXk for the union of the domains of
the variables in Xk; analogously DX stands for the union of all the domains of
the variables in X.

We denote by lkd and uk
d the lower and upper bounds on the number of oc-

currences of value d ∈ DX among X
k. It follows that we should have lk+1

d ≤ lkd
and uk+1

d ≤ uk
d for k = 1, . . . , � − 1. For example l1d = 5, u1

d = 7, l2d = 3, u2
d = 4

means that value d occurs between 5 and 7 times in X
1, including between 3 and

4 times in X
2. The related vectors of lower and upper bounds are denoted by lk

and uk for k = 1, . . . , �.

Definition 2 (nested gcc). The nested global cardinality constraint is formally
defined as

nested gcc(X1, . . . , X�, (l1, u1), . . . , (l�, u�)) =

{τ = (d1
1, . . . , d

1
n1 , d2

1, . . . , d
�
n�

) | dk
i ∈ Dk

i , ∀1≤k≤�,∀d ∈ DX : lkd ≤ #(d, τ ↓Xk) ≤ uk
d}

Note that it is possible to model the nested gcc as a set of traditional gcc’s:
for each set X

k, we define a gcc in which we set the corresponding upper and
lower bounds. But such a formulation is strictly weaker, as we shall see in
Proposition 1.

Generalizations of the Global Cardinality Constraint 365

Going back to our resource allocation problem, the tasks would correspond to
the values and the resources to the variables, arranged in disjoint sets according
to their level. As defined, the constraint requires that each resource be assigned
to a task. In some problems, like rostering, it might be useful to find an assign-
ment that, while satisfying the lower bound constraints, keeps some resources
unassigned. This can be easily modeled by adding an extra value (without re-
quirements) representing a fake activity; resources that are assigned to it are in
fact unused.

Example 2. A company needs to form some teams in order to accomplish 5 tasks.
Only 6 technicians with different skills are available. Three of them have skill
level equal to 2 (capable of accomplishing a job requiring skill level 1 or 2) and the
remaining three have a skill level equal to 1. Moreover the three technicians with
basic skills are not allowed to be assigned to the task 5. We model the problem
with 6 variables representing the resources divided in two sets: X1 = {x1

1, x
1
2, x

1
3}

and X2 = {x2
1, x

2
2, x

2
3}. The variable domains are respectively: D1

1 = D1
2 = D1

3 =
{d1, d2, d3, d4} and D2

1 = D2
2 = D2

3 = {d1, d2, d3, d4, d5}. The tasks require re-
spectively a minimum of 1, 1, 1, 1 and 2 technicians of skill level at least 1. Tasks
3 and 4 each need at least one technician of level 2. None of the tasks can accom-
modate more than 3 technicians (independently from the level). We would model
this situation as nested gcc({x11, x12, x13}, {x21, x22, x23}, ([1, 1, 1, 1, 2], [3, 3, 3, 3, 3]),
([0, 0, 1, 1, 0], [3, 3, 3, 3, 3])). The alternate model using two gcc’s is illustrated at
Figure 1.

x2
1

x2
2

x2
3

x1
1

x1
3

d2 [1,3]

d3 [1,3]

d4 [1,3]

d5 [2,3]

x2
1

x2
2

x2
3

d1 [0,3]

d2 [0,3]

d3 [1,3]

d4 [1,3]

d5 [0,3]

x1
2

d1 [1,3]

Fig. 1. Traditional GCC modelling for the Nested-GCC

Proposition 1. Modelling the constraint nested gcc as a set of traditional gcc
does not achieve domain consistency.

Proof. Consider Example 2. Both gcc constraints are domain consistent however
the instance is unsatisfiable. Two variables in X2 must take the value d3 and d4
(from the level 2 gcc), hence there is only one variable left to assign to d5 that
requires a minimum of two variables (from the level 1 gcc).

Even though it has been proven ([3]) that finding a consistent solution to a set
of overlapping gcc’s is an NP-Complete problem, the particular nested structure
is such that it is possible to find a consistent assignment in polynomial time as
we shall see in the next section.

366 A. Zanarini and G. Pesant

3.1 Graph Representation

We propose a new graph representation for the nested gcc. Informally, it con-
tains vertices representing the variables from the Xk sets and vertices that denote
the values; differently from the traditional gcc, the value vertices are duplicated
for each set Xk while variable vertices remain singletons; arcs connect successive
replications of value vertices. In order to identify duplicate value vertices, for
each value di ∈ DX we add a superscript that refers to its corresponding set Xk.
We write Dk

X
to denote the set of values in DX with superscript k; hence dk

i ∈ Dk
X

and dk′

i ∈ Dk′

X
represent the value di but two different value vertices for sets Xk

and Xk′
. The directed graph G = (V, A) is defined as follows:

V = X ∪
(�⋃

k=1

Dk
X
) ∪ {s, t}

A = As ∪
(�⋃

k=1

AXk

)
∪

(�⋃

k=1

Ak
req

)

where
As = {(s, xk

i) | k = 1, . . . , � , i = 1, . . . , nk}
AXk = {(xk

i , dk
j) | i = 1, . . . , nk, dk

j ∈ Dk
i }

Ak
req =

{
{(d1

i , t) | i = 1, . . . , |DX|} if k = 1
{(dk

i , dk−1
i) | i = 1, . . . , |DX|} if 2 ≤ k ≤ �

The lower bounds and upper bounds of the arcs a ∈ As are unitary; they are
respectively null and unitary for the arcs a ∈ AXk . For each arc (dk

i , v) the lower
bound is equal to lki and the upper bound is uk

i .
The graphical representation of Example 2 is given at Figure 2.

3.2 Domain Consistency and Propagation Algorithm

A feasible flow on the introduced graph representation reflects a feasible assign-
ment of the nested gcc constraint. A flow going from a variable vertex xk

i to a
value vertex dk corresponds to the assignment xk

i = d. In addition a value vertex
dk collects all the flow coming from duplicate value vertices dj , j ≥ k, which
means it receives a flow equal to the number of assignments of d to variables
in X

k. For a given value vertex, the bounds on the single outgoing arc con-
straint the number of occurrences according to the definition of the constraint,
by construction.

Theorem 2. There is a bijection between solutions to the nested gcc and fea-
sible flows in the related graph representation G.

Proof. ⇒ Given a solution, we can build a feasible flow setting a unitary flow in
the arc (xk

i , dk
j) for each assignment xk

i = dj. The arcs in As are all saturated.
An arc (dk

j , v) ∈ Ak
req has a flow equal to #(dj , τ ↓Xk). Note that for any given

k and vertex dk
j , demands and capacities of the arc (dk

j , v) ∈ Ak
req are satisfied

Generalizations of the Global Cardinality Constraint 367

x2
1

x1
1

x1
3

x2
2

x2
3

t

sd2
5

d2
4

d2
1

d2
3

d2
2

[0, 3]

[1, 3]

[2,
3]

[1, 3]

[1, 3]

d1
5

d1
4

d1
1

d1
3

d1
2

[0, 3]

[1,
1]

[1, 3]
[0, 3]

[1, 3]

[1, 3]

[1, 1]

[1, 1]

[1, 1]

[1
, 1

]

t

s

V alueGraph1

(b)(a)

V alueGraph2 [l2, u2]

[l1, u1]

x1
2

[1, 1]

Fig. 2. (a) Nested-GCC Graph Representation for Example 2: if not shown the lower
and upper bounds are respectively null and unitary. (b) Schematic graph representation
for Example 2.

since the related flow is equivalent to the sum of the flow coming from level k
and higher.
⇐ Given a feasible (integral) flow, we build an assignment setting xk

i = dj

whenever f(xk
i , dk

j) = 1.

Consider again Example 2: the constraint is infeasible and there is no feasible
flow in the related graph G of Figure 2.

Corollary 1. Let G be the graph representation of a nested gcc and f a feasible
flow on G. The constraint is domain consistent iff for each arc a ∈ AXk there
exists a feasible flow such that f(a) = 1.

Proof. From Theorem 2, if there exists a feasible flow that has f(a) = 1 with
a = (xk

i , dk) then there exists a solution with xk
i = d. Analogously, if there exists

a solution with xk
i = d then there exists a flow with f(a) = 1 where a = (xk

i , dk).

Following Régin in [6], we can design a filtering algorithm in which we find a
feasible flow in the graph representation in order to check the feasibility of the
constraint. If it does not exist then the constraint is infeasible. Otherwise, we
compute the strongly connected component [7] of the residual graph and then
every arc that does not belong to any strongly connected component can be
removed.

368 A. Zanarini and G. Pesant

3.3 Complexity

In the following, we use N to indicate the total number of variables and d
for |DX|. The propagation of the nested gcc requires O(nm) time to find a
feasible flow (Ford-Fulkerson) and O(n + m) to find infeasible values where n
is the number of vertices and m is the number of arcs of the nested gcc graph
representation. Here, n is in O(N + d�) and m is in O(Nd + d�). Note that the
equivalent set of gcc’s representing the nested gcc requires the propagation of
� different gcc’s.A single gcc propagates in O(

√
n′m′) [4] where n′ and m′ are

respectively the number of vertices and the number of arcs of the gcc graph
representation and n′ ∈ O(N + d) and m′ ∈ O(Nd).

4 Further Generalization

So far, skill levels have been considered linearly ordered: a resource of level k is
able to satisfy requirements of levels k, k − 1, . . . , 1. The main challenge is now
how far we can generalize relations between skill levels in order to address more
complex problems while still using the flow algorithm.

Different skill level relations are shown in Figure 3: in (a) the skill levels
are linearly ordered while in (b) levels are organized in a tree-like fashion. The
semantic of 3b is that both resources of type β and γ can accomplish a task with
requirements of type α, whereas resources of type β cannot satisfy requirements
of type γ (and the other way around). Equivalently, we write δ � β, β � α,
ε � γ, ζ � γ, η � γ and γ � α, where we consider � a reflexive, antisymmetric
and non-transitive relation. The transitive closure of � is denoted by �∗ (hence,
for instance δ �∗ α). Note that the relation between resource classes is not a
partial order relation: we cannot have λ � μ and λ � ν or, in other words, lower
classes cannot rejoin in a single higher class. The reason of this limitation will be
clarified in the next paragraph. Furthermore the relation set is such that there
exists only a single root: a definition of multiple roots (a forest) simply gives rise
to different constraints.

�

α

� − 1

β γ

ε ζ ηδ

φ χ ψ ω

1

(b)(a)

Fig. 3. Skill level relations: (a) linearly ordered skill levels and (b) tree-like ordered
skill levels

Generalizations of the Global Cardinality Constraint 369

Example 3. A company is planning to develop two software components c1 and
c2 for an application. The component c1 requires between 7 and 10 programmers
while c2 between 8 and 10. Particularly, both components need 1 or 2 expert
developers and 3 or 4 testers. A programmer is either a basic developer or an
expert developer or a tester, however both expert developers and testers can
accomplish duties as a basic developer (”expert developer” � ”basic developer”,
”tester” � ”basic developer”). The company has 4 novices, 8 testers and 3 expert
developers. The different relations and component requirements are depicted in
Figure 4. A possible solution is to assign 4 testers for each component; one tester
for each component should work as a basic developer. Novices are evenly divided
between the two tasks, one expert developer will be assigned to the development
of component c1 and finally the remaining two expert developers will work for
the component c2 (one as a basic developer).

basic developer

expert developer tester

(a)

[8,10]

[1,2] [3,4]

(c)

[7,10]

[1,2] [3,4]

(b)

Fig. 4. (a) Programmers skill relations. (b) Requirements for component c1. (c) Re-
quirements for component c2.

Note that, more generally, whenever we have a taxonomy or hierarchy of re-
sources, we can easily derive the resource relations. This scenario fits perfectly
applications in which resources are represented as classes in a UML class diagram
and they are organized in a hierarchy (with single inheritance); a subclass by
definition is a specialization of the superclass, it is able to act as the superclass
(the subclass ”is” a kind of superclass) but it has additional capabilities.

We now formally introduce the constraint that models the described prob-
lem substructure. In the following, Σ represents the set of different resource
classes where, arbitrarily, α is considered the lower level (i.e. the root class).
The variables representing resources of class γ ∈ Σ are denoted by Xγ . We
write X

λ =
⋃

{Xγ |γ ∈ Σ, γ �∗ λ} to represents the union of the variables of
level λ and higher w.r.t. the relation �1. For short, we write X = X

α.

Definition 3 (hierarchical gcc). The hierarchical global cardinality constraint
is formally defined as

hierarchical gcc(Xα, . . . , Xω, (lα, uα), . . . , (lω, uω), �) =

{τ = (dα
1 , . . . , dα

nα
, dβ

1 , . . . , dω
nω

) | dγ
i ∈ Dγ

i , ∀γ ∈ Σ, ∀d ∈ DX : lγd ≤ #(d, τ ↓Xγ) ≤ uγ
d}

1 Of which the linear order relation used for the nested gcc is a special case.

370 A. Zanarini and G. Pesant

4.1 Graph Representation

The graph representation is similar to the one introduced for the nested gcc;
it differs mainly in how the gcc subgraphs are connected. We have a gcc sub-
structure for each resource class; value vertices are still duplicated and they are
connected to the equivalent value vertices following the resource relations. Note
again that resources can be only of a given class, hence a resource is represented
by exactly one vertex. The total amount of flow coming out from a variable
vertex is still unitary.

More formally, the graph G = (V, A) is defined as follows:

V = X ∪
(⋃

γ∈Σ

Dγ
X
) ∪ {s, t}

A = As ∪
(⋃

γ∈Σ

AXγ

)
∪

(⋃

γ∈Σ

Aγ
req

)

where
As = {(s, xγ

i) | γ ∈ Σ , i = 1, . . . , nγ}
AXγ = {(xγ

i , dγ
j) | γ ∈ Σ, dγ

j ∈ Dγ
i }

Aγ
req =

{
{(dα

i , t) | i = 1, . . . , |DX|} if γ = α
{(dγ

i , dλ
i) | i = 1, . . . , |DX| : γ � λ} if γ �= α

Arcs in As have unitary lower and upper bounds, whereas arcs in AXγ have
null lower bounds and unitary upper bounds. Each arc (dγ

i , v) ∈ Aγ
req has lower

and upper bound respectively equal to lγdi
and uγ

di
.

An example is given in Figure 5; four classes of resources are defined with the
following relations: δ � β, β � α and γ � α. The equivalent constraint graph
representation is shown in Figure 5b.

β - [lβ, uβ]

(b)

[lβ , uβ]

δ - [lδ, uδ]

α - [lα, uα]

s

t

V alueGraphδ

V alueGraphβ

V alueGraphα

V alueGraphγγ - [lγ, uγ]

[lγ , uγ]

[lα, uα]

[lδ, uδ]

(a)

Fig. 5. (a) Resource relation. (b) Constraint graph representation.

Generalizations of the Global Cardinality Constraint 371

One of the reasons why it is not possible to express resource relations as
a partially ordered set (poset) is that we might have a situation like: λ � μ
and λ � ν. Thus, the outcome of a gcc substructure may have to flow in two
different gcc substructures: gccλ should output both in gccμ and gccν. Doubling
the input flow (and consequently the output flow) of the gccλ will clearly lead
to inconsistencies inside the gcc substructure.

4.2 Domain Consistency and Propagation Algorithm

Theorem 3. There is a bijection between solutions to the hierarchical gcc
and feasible flows in the related graph representation G.

Proof. ⇒ Given a solution, we can build a feasible flow setting a unitary flow in
the arc (xγ

i , dγ
j) for each assignment xγ

i = dj. The arcs in As are all saturated.
An arc (dγ

j , v) ∈ Aγ
req has a flow equal to #(dj , τ ↓Xγ).

⇐ Given a feasible (integral) flow, we build an assignment setting xγ
i = dj

whenever f(xγ
i , dγ

j) = 1.

Corollary 2. Let G be the graph representation of a hierarchical gcc and f a
feasible flow on G. The constraint is domain consistent iff for each arc a ∈ AXγ

there exists a feasible flow such that f(a) = 1.

Proof. From Theorem 3, if there exists a feasible flow that has f(a) = 1 with
a = (xγ

i , dγ
j) then there exists a solution with xγ

i = dj. Analogously, if there
exists a solution with xγ

i = dj then there exists a flow with f(a) = 1 where
a = (xγ

i , dγ
j).

The propagation algorithm works exactly as in the nested gcc with the only
difference given by the graph. The resulting complexity is then equivalent, that
is, O(nm) where n and m are respectively the number of vertices and edges of
the graph representation. Here, n is in O(N + d�) and m is in O(Nd + d�).

5 Experimental Results

We implemented the nested gcc and hierarchical gcc and we compared them
with the equivalent set of gcc’s. Due to time constraints, we were able to gener-
ate significant instances only for the nested gcc setting. We chose as benchmark
some random instances of the ROADEF challenge. We recall briefly that the
problem consists of grouping technicians in teams in order to accomplish a set of
tasks. A technician has skills in different domains and, particularly, he has asso-
ciated a skill level for each domain; a technician is able to satisfy requirements
of his skill level and lower. A task requires a specified number of technicians for
each pair domain-level in order to be accomplished. The goal is to form teams
of technicians such that they are able to perform a given set of tasks.

The problem is modeled as a set of nested gcc’s one for each domain where
the variables represent the technicians and the values represent the tasks. As
variable selection heuristic, we developed an ad-hoc heuristic that chooses the

372 A. Zanarini and G. Pesant

Table 1. Experimental results

Instance Perc. nested gcc gcc’s ILOG gcc’s
Time (secs) Backtracks Time (secs) Backtracks Time (secs) Backtracks

data11-a 0.1 0.01 4 0.01 4 0.01 4
data11-a 0.2 0.01 0 0.01 0 0.01 0
data11-a 0.3 13.61 73381 14.12 73381 11.92 73381
data11-a 0.4 0.40 2261 0.38 2261 0.33 2261
data11-a 0.5 0.02 68 0.01 68 0.01 68
data11-b 0.1 - 1944273 - 2444379 - 3800974
data11-b 0.2 35.75 106324 56.27 202690 51.76 202690
data11-b 0.3 3.85 10992 4.65 17454 3.96 17454
data11-b 0.4 3.1 8267 2.75 9219 2.51 9219
data11-b 0.5 1.76 4986 1.36 5382 1.52 5382
data11-c 0.1 6.43 23531 5.49 23778 3.52 23778
data11-c 0.2 3.18 11771 2.71 11979 1.81 11979
data11-c 0.3 0.07 247 0.07 247 0.05 247
data11-c 0.4 0.01 1 0.01 1 0.01 1
data11-c 0.5 0.01 1 0.01 1 0.01 1
data11-d 0.1 4.15 16478 7.04 26766 5.59 26766
data11-d 0.2 0.01 11 0.01 38 0.02 38
data11-d 0.3 0.01 4 0.01 15 0.01 15
data11-d 0.4 0.01 1 0.01 1 0.01 1
data11-d 0.5 0.01 1 0.01 1 0.01 1
data12-a 0.2 - 2219874 - 2495188 - 2763002
data12-a 0.3 140.43 422107 - 2373366 - 2650290
data12-a 0.4 0.16 419 135.44 505243 154.01 505243
data12-a 0.5 0.11 300 6.47 22099 6.64 22099
data12-a 0.6 0.01 1 0.03 75 0.04 75
data12-b 0.2 - 1327519 - 1601952 - 1231394
data12-b 0.3 - 1376981 - 1642615 - 1169144
data12-b 0.4 20.16 45634 36.00 109762 53.24 109762
data12-b 0.5 0.38 827 0.52 1274 0.74 1274
data12-b 0.6 0.01 1 0.01 1 0.01 1
data12-c 0.2 - 1810092 - 2184929 - 3317824
data12-c 0.3 13.24 36336 20.12 75787 14.74 75787
data12-c 0.4 1.12 2835 1.55 5475 1.02 5475
data12-c 0.5 0.12 266 0.28 1033 0.26 1033
data12-c 0.6 0.05 69 0.83 2618 0.74 2618
data12-d 0.2 - 1434098 - 2363013 - 2361900
data12-d 0.3 - 1483539 - 2185816 - 2030271
data12-d 0.4 179.00 353462 148.62 445726 172.92 445726
data12-d 0.5 98.02 185798 74.77 203920 74.04 203920
data12-d 0.6 0.09 152 0.06 152 0.04 152

most skilled technicians first; from preliminary tests this heuristic seemed to nar-
row the gap between nested gcc and the set of gcc representations. The testbed
has been generated as follows: each task has associated an optimistic approxi-
mation of the technicians needed; then from the set of tasks, we chose randomly

Generalizations of the Global Cardinality Constraint 373

a subset such that the sum of the approximations is less than the number of
available technicians. Furthermore, we randomly removed values from variable
domains according to an input percentage.

The constraint has been implemented with Ilog Solver 6.2 and the tests were
performed on a machine with an AMD Dual Opteron 250 (2.4GHz) with 3GB
RAM (note however that only one processor has been used). We set a time limit
of 600 seconds for each run. We compared two different models: the former ex-
ploits the nested gcc, the latter uses traditional gcc’s. For a fair comparison, the
second model has been solved using both our implementation of the gcc and the
ILOG’s one. The results are shown in Table 1. Instances from data11 have 4 skill
domains with 4 skill levels each whereas instances from data12 have 5 domains
with 3 skill levels each. Each instance has been tried with different percentages
of domain value removals (shown in the second column). The remaining columns
show the running times (for finding a solution or proving infeasibility) and the
number of backtracks respectively for the nested gcc, gcc and the ILOG’s one;
in all three approaches the same variable and value ordering heuristics have been
used. If the running time is not shown, the solver timed out either without find-
ing a solution or without proving the infeasibility of the instance (however in
those cases we show the number of backtracks performed within the time limit).

Depending on the instance, the reduction on the number of backtracks us-
ing the nested gcc can go from null to two orders of magnitude; whenever the
reduction is significant, we obtain better running times. Nonetheless there are
instances in which even with our implementation of the gcc we get better per-
formances over the nested gcc. Hence, further studies are required in order to
better characterize the instances and understand when the use of the nested gcc
is likely to lead to better running times. We think that an instance generator
with a more fine grained parameterization could help us in this task as well as
in generating a broader testbed. In fact, the basic generator produced too many
instances either too easy or too hard, the same problem that we encountered
also during the generation of a testbed for the hierarchical gcc.

6 Expressing Preferences

For ease of presentation, in this section we take into consideration only linearly
ordered resources. However the results can be easily extended to the hierarchical
version.

In the constraints presented, there might be cases in which we would like
to define some preferences among different consistent assignments. Imagine, for
example, that a given task requires one resource of level 1 and one of level
2; however only one resource of level 2 and one of level 3 are available. The
constraint does not allow to express a difference between a solution in which
the level 3 resource will perform level 1 duties or a solution in which the level
2 resource will carry out level 1 duties and the level 3 resource level 2 duties.
Nonetheless, in both solutions we simply have the two resources assigned to the
same task without any information about who is going to perform what. We

374 A. Zanarini and G. Pesant

should then enrich the model in order to express this new information. In this
new setting, domains should contain for each task different values to denote
different duty levels. So, dk

j represents the task j with duty level k; assignment
xk′

i = dk
j means that resource i of level k′ is going to perform duties of level k

of task j. For the sake of clarity, note that in the nested gcc we would have
had simply xk′

i = dj ; the differentiation of duty levels is only present inside the
graph representation but not at the constraint level; for expressing preferences
such differentiation needs to be brought up to the constraint level.

In the graph representation of nested gcc with preferences, a variable xk′

i is
connected directly to value vertices dk

j with k ≤ k′. Lower and upper bounds of
value occurrences are expressed directly for each dk

j . It follows that occurrences
of a value dk

j do not interfere with the ones of value dk′

j with k �= k′. Hence, the
graph representation does not contain anymore the arcs Ak

req that connect value
vertices of different levels but rather value vertices are directly connected to the
sink. In order to express preferences, we should also introduce positive costs
on the arcs (xk′

i , dk
i) whenever k < k′. Thus, the overall graph representation

is similar to a particular case of the cost gcc [5]. Figure 6 shows an example
of a nested gcc with preferences in which we have 5 variables and 9 values (5
resources with 3 different skill levels and 3 tasks leading to an overall of 9 different
values). With such a representation it is also straightforward to constraint the
eventual gap in a given assignment between the resource level and the duty level.

Note that this particular graph representation could not be used for the
nested gcc. For instance, take in consideration Figure 6: if this would have
been a traditional nested gcc, value vertices represent simply tasks, hence d2

2
denotes the task 2 as well as d1

2. Suppose furthermore that task 2 requires at

x3
1

x1
1

x1
2

x2
1

x2
2

t

d2
3

d2
2

d2
1

s

d3
3

d3
2

d3
1

d1
3

d1
2

d1
1

Fig. 6. Graph representation for the nested gcc with preferences

Generalizations of the Global Cardinality Constraint 375

most 1 resource of level 2 or higher. The constraint would be consistent even
with assignments x2

1 = d1
2 and x2

2 = d2
2 hence leading to contradiction.

7 Conclusions

We proposed generalizations of the gcc to address certain resource allocation
problems. We showed both theoretically and empirically that such generaliza-
tions can outperform an alternate formulation using gcc’s. As future work, we
plan to do a more extensive empirical analysis in order to better characterize
the hardness of the instances. Finally we will consider filtering on occurrence
variables.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful
comments.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. K.R. Apt. Principles of Constraint Programming. Cambridge Unievristy Press, 2003.
3. K. Elbassioni, I. Katriel, M. Kutz, and M. Mahajan. Simultaneous Matchings. Pro-

ceedings of the Sixteenth International Symposium on Algorithms and Computation
(ISAAC 2005), Springer LNCS 3827: 106-115.

4. C-G. Quimper, Alejandro López-Ortiz, P. van Beek and Alexander Golynski. Im-
proved Algorithms for the Global Cardinality Constraint. Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Programming
(CP 2004), Springer LNCS 3258: 542-556.

5. J-C. Régin. Arc Consistency for Global Cardinality Constraints with Costs. Proceed-
ings of the Fifth International Conference on Principles and Practice of Constraint
Programming (CP 1999), Springer LNCS 1713: 390-404.

6. J-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96),
AAAI Press: 209-215.

7. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1:146-160, 1972.

8. Challenge Roadef 2007, http://gilco.inpg.fr/ChallengeROADEF2007/ , 2007-01-30.

A Column Generation Based Destructive Lower

Bound for Resource Constrained Project
Scheduling Problems�

J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

Department of Information and Computing Sciences
Utrecht University

P.O. Box 80089, 3508 TB Utrecht, The Netherlands
marjan@cs.uu.nl, diepen@cs.uu.nl, slam@cs.uu.nl

Abstract. In this paper we present a destructive lower bound for a
number of resource constrained project scheduling (RCPS) problems,
which is based on column generation. We first look at the problem with
only one resource. We show how to adapt the procedure by Van den
Akker et al. [1] for the problem of minimizing maximum lateness on a
set of identical, parallel machines such that it can be used to solve these
RCPS problems. We then consider a number of variants of the RCPS
problem with one or more resources and show how these can be solved
by our approach. Because of the close relation between RCPS and the
cumulative constraint in constraint programming, our method can be
used as an efficient filtering algorithm for the cumulative constraint as
well.

1980 Mathematics Subject Classification (Revision 1991): 90B35.

Keywords and Phrases: resource constrained project scheduling, cu-
mulative constraint, linear programming, column generation, generalized
precedence constraints.

1 Introduction

In this paper we consider a number of basic problems from project scheduling;
we refer to the survey paper by Brucker, Drexl, Möhring, Neumann, and Pesch[6]
for an overview of this area. We further refer to Van den Akker, Hoogeveen, and
Van de Velde [2], Baptiste, Le Pape, and Nuijten [3], and Bazaraa, Jarvis, and
Sherali [4] for an overview of the application of column generation in scheduling,
for an overview of the application of constraint programming in scheduling, and
for an overview of linear programming in general, respectively.

The basic resource constrained scheduling problem we are looking at is defined
as follows. We are given a set of n jobs, which we denote by J1, . . . , Jn. For each job
Jj we are given its processing time pj , its release date rj , its deadline d̄j , and its

� Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Cre-
ating the Knowledge Society).

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 376–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Column Generation for RCPS 377

resource consumption pattern, which gives the amount of resource needed during
its execution; for the time being, we assume that there is only one kind of resource.
For each job Jj we are asked to find a valid starting time Sj and completion time
Cj = Sj + pj such that job Jj does not start before its release date (Sj ≥ rj), it is
completed by its deadline (Cj ≤ d̄j), and such that the total resource consump-
tion of the jobs at any time t does not exceed the amount of resources available
at that time. Moreover, between each pair of jobs Ji and Jj , there can be general-
ized precedence constraints, which define a lower bound and/or upper bound on
Si−Sj . In case the upper and lower bound are equal, we say that there is a no-wait
constraint between Ji and Jj . The goal is to minimize either the makespan Cmax
or the maximum lateness Lmax = maxj Lj , where the lateness Lj of job Jj is de-
fined as the difference between the completion time Cj and the due date dj , which
denotes a target completion time. In fact, our approach can easily be generalized
further to deal with any regular minimax function.

The resource constrained project scheduling problem has received attention
from both operations research and constraint programming. We only discuss a
few contributions. Brucker and Knust ([7], [8]) have applied column generation
to a number of resource constrained project scheduling problems in which the
goal is to minimize the makespan. Here they first formulate the problem as a
decision problem and then use linear programming to check whether it is possible
to execute all jobs in a feasible preemptive schedule; here the decision variables
refer to the length of a time slice during which a given set of jobs is executed
simultaneously. Cesta, Oddi, and Smith [9] have applied constraint programming
to the makespan problem. The key here is to determine a schedule that is feasible
for all constraints except for the resource consumption. Then resource conflicts
are determined and resolved.

Van den Akker, Hoogeveen, and van Kempen [1] have looked at the special
case of the above model in which the available amount of resources is constant
over time (say m) and each job has a constant resource consumption pattern
of one, that is, at any time during its execution, it consumes one unit of re-
source. This problem is then equivalent to the parallel machine scheduling with
m parallel, identical machines. Van den Akker et al. [1] have presented a column
generation based method to solve it, which yields a lower bound that turned out
to be tight in all their computational experiments. They further gave a method
to find a feasible solution with value equal to the lower bound. We will briefly
discuss their method in Section 2. In Section 3 we will describe how we can
extend their method to solve a number of basic RCPS problems. In Section 4 we
consider two other extensions, concerning change-over times and machine main-
tenance. Finally, we draw some conclusions and present directions for future
research in Section 5.

2 Reviewing the Basic Method

Here, we briefly review the column generation approach presented in [1] for the
problem of minimizing Lmax on a set of m parallel, identical machines. Each

378 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

job needs exactly one machine during its processing. Furthermore, there are re-
lease dates, deadlines, and generalized precedence constraints. The minimization
problem is turned into a feasibility problem by putting an upper bound L on
Lmax; this is equivalent to adding deadlines d̄j ← dj + L (j = 1, . . . , n). Since a
feasible schedule corresponds to a collection of at most m feasible, single-machine
schedules containing all n jobs, the decision problem can be reformulated as: is
it possible to partition the jobs in at most m subsets such that for each subset we
can find a feasible single-machine schedule? Finally, the latter decision problem
is solved by answering the question: what is the minimum number of feasible
single-machine schedules that are needed to accommodate all jobs?

This problem is formulated as an integer linear programming problem as
follows. We call a subset of jobs that allow a feasible single-machine schedule
with respect to the release dates and deadlines a machine schedule. Let S be
the set containing all machine schedules. We introduce binary variables xs (s =
1, . . . , |S|) that take value 1 if machine schedule s is selected and 0 otherwise.
For each machine schedule s we encode whether job Jj is included (then ajs = 1)
or not (ajs = 0), and we encode the starting times Sjs of the jobs with ajs = 1
(j = 1, . . . , n). Since two jobs that are connected through a precedence constraint
do not have to be executed by the same machine, the generalized precedence
constraints are not included in the feasibility of the machine schedules, and we
include a constraint in the integer linear programming formulation for each of
the generalized precedence constraints. We define A1 as the arc set containing
all pairs (i, j) such there exists a precedence constraint of the form Sj −Si ≥ qij ;
similarly, we define A2 and A3 as the arc sets that contain an arc for each pair
(i, j), for which Sj − Si ≤ qij and Sj − Si = qij , respectively. Note that the
intersection of A1 and A2 does not have to be empty. We denote the union of
A1, A2, and A3 by the multiset A. This leads to the following integer linear
programming formulation

min
∑

s∈S

xs

subject to ∑

s∈S

ajsxs = 1, for each j = 1, . . . , n, (1)

∑

s∈S

Sjsxs −
∑

s∈S

Sisxs ≥ qij for each (i, j) ∈ A1; (2)

∑

s∈S

Sjsxs −
∑

s∈S

Sisxs ≤ qij for each (i, j) ∈ A2; (3)

∑

s∈S

Sjsxs −
∑

s∈S

Sisxs = qij for each (i, j) ∈ A3; (4)

xs ∈ {0, 1}, for each s ∈ S.

We relax the integrality constraints to xs ≥ 0; the upper bound xs ≤ 1 follows
from the other constraints. The LP-relaxation is solved by applying column
generation. To start, we give each job its own machine. Given the outcome
of the current LP, we find dual multipliers λj for Constraints 1 and δij for the

Column Generation for RCPS 379

Constraints 2-4 in which jobs Ji and Jj are involved. The reduced cost of machine
schedule s is then equal to

c′s = 1 −
n∑

j=1

ajsλj −
n∑

j=1

⎡

⎣
∑

h∈Precj

δhjSjs −
∑

k∈Sucj

δjkSjs

⎤

⎦ ,

where Precj and Sucj are defined as the sets containing all predecessors and
successors of job Jj in A, respectively. The pricing problem is then to find a
machine schedule with minimum reduced cost. Since solving the LP-relaxation
by column generation only renders us a lower bound when the column generation
procedure has finished, we compute an intermediate lower bound as

∑

s∈S

xs ≥

⎡

⎣
n∑

j=1

λj +
∑

(j,k)∈A

δjkqjk

⎤

⎦ /(1 − c∗),

where c∗ denotes the outcome value of the pricing problem.
Since the pricing problem is NP-hard to solve, we do not solve it to optimality

in each iteration. We apply a two-phase Simulated Annealing procedure to find
a good solution. In the first phase, we decide which jobs are included in the
machine schedule and in which order. In the second step, we find the optimal
starting times of the included jobs. After that, we change the choices made in
phase 1, etc. We mostly use the local search procedure to find good solutions
to the pricing problem, but after 50 iterations, or when we cannot find any
improving column, we turn to a time-indexed linear programming formulation
of the pricing problem. Here we use binary variables xjt to indicate whether
job Jj starts at time t or not; the corresponding cost coefficients cjt are easily
determined. The ILP-formulation (ignoring the constant) then becomes

min
n∑

j=1

d̄j−pj∑

t=rj

cjtxjt

subject to
d̄j−pj∑

t=rj

xjt ≤ 1 ∀j = 1, . . . , n; (5)

n∑

j=1

t∑

s=t−pj+1

xjs ≤ 1 ∀t = 0, . . . , T − 1; (6)

xjt ∈ {0, 1} ∀j = 1, . . . , n; ∀t = rj , . . . , d̄j − pj .

Here T denotes the latest point in time at which at least two jobs can be executed.
Constraint 5 decrees that each job can be chosen at most once, and Constraint 6
states that at most one job should be executed at any time.

Since we need to find out whether there exists a solution using at most m
machines, we stop as soon as the outcome of the LP-relaxation has hit m. If the

380 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

outcome of the current LP is bigger than m, and we cannot find an improving
column, then we can compute the outcome value of the pricing problem that
we need such that the intermediate lower bound equals m. We can then ask the
ILP-solver whether there exists a solution to the pricing problem with that value
or less. If it does not exist, then we have proven that m is not achievable, and
we are done; if we can find it, then this is an improving column that we add, etc.
In this way, we do not have to solve the time-indexed formulation to optimality.

Finally, when we have found the smallest upper bound L on Lmax that cannot
be proven impossible, then we try to construct a feasible schedule with Lmax
equal to L by formulating the problem as a time-indexed ILP. Solving this ILP
from scratch only works for small instances. But when we insert our knowledge
of the lower bound by adding the constraint LMAX = L, then our ILP-solver
CPLEX finds a feasible solution rather quickly, if it exists. So far (and we have
run a lot of experiments), we have not found an instance in which the optimum
solution is not equal to the lower bound.

In the remainder of this section, we discuss the computational experiments
by Van den Akker et al.[1]. Note that in these experiments, we did not include
any no-wait precedence constraints. In our experiments we compared our hybrid
algorithm, i.e. column generation and then for the identified lower bound L
solving the time-indexed ILP with LMAX = L, to the approach of letting
CPLEX solve the time-indexed ILP formulation without knowing the value of
the lower bound; from now on, we will refer to this as the ignorant ILP. We
have applied both algorithms on 6 scenarios; for each scenario we ran ten test
instances. The scenarios are described in Table 1. The algorithms were encoded

Table 1. Test scenarios

Number pj rj dj n m # prec

0 U[1,20] U[0,60] U[50,80] 40 4 20

1 U[1,20] U[0,40] U[30,60] 70 5 35

2 U[1,20] U[0,40] U[60,80] 100 9 40

3 U[1,20] U[0,60] U[80,110] 180 10 60

4 U[1,20] U[0,60] U[40,80] 60 5 30

5 U[1,20] U[0,60] U[50,80] 30 3 15

in Java and the experiments were run on a Pentium 4, 3 Ghz PC with 1 GB
memory. For each instance we let each algorithm run for at most 30 minutes.

Our results clearly showed that our hybrid algorithm outperformed the method
of letting CPLEX solve the ignorant ILP by far. For all instances we managed
to solve, the derived lower bound was equal to the optimal value. There are
some instances for which we could not check whether optimum and lower bound
coincided, for we could not solve them within 30 minutes. This may be due to
a gap between the lower bound and the optimum. However, we were never able
to show that the lower bound differed from the optimum for any instance. Al-
together we may draw the conclusion that our lower bound is extremely strong.

Column Generation for RCPS 381

If we compare solving the ignorant ILP with the second part of the hybrid algo-
rithm, then we see that specifying the optimum makes a lot of difference. Most
likely the preprocessing steps performed by CPLEX play an important role in
this. Therefore, we may expect the technique of constraint satisfaction to work
very well to find a solution of value L if such a solution exists.

3 The RCPS Problem

3.1 One Resource

Unit resource consumption
We first look at the case that the resource consumption pattern is constantly
equal to 1 for each job Jj , but the available amount of nonrenewable resources
is not constant over time. We capture this situation in the general framework of
[1] by issuing dummy jobs, which ‘eat up’ the missing resources. This is achieved
in the following way. We define the number of machines m to be equal to the
maximum amount of resource available at any time. Now we determine the
amount of resource that is missing over time with respect to m; this will yield
a figure with a number of piles of blocks on top of each other, where the higher
you come, the smaller the block is. For each block, we introduce a dummy job
with the following characteristics: it has processing time equal to the length of
the block; release date equal to the left time point of the block; and deadline
equal to the right time point of the block. In the example of Figure 1, we have
a pile with three blocks, which lead to the three jobs called D1, D2, D3. The
release dates and deadlines of these jobs are ri and d̄i; the processing times are
equal to d̄i −ri (i = 1, . . . , 3). We further assume that each dummy job has a due
date that is unrestrictively large to prevent any interference with the Lmax value.
Note that the choice of dummy jobs is not unique. We can, for example, mingle
the dummy jobs D1 and D2 to obtain D′

1 and D′
2 by swapping the deadlines

and adjusting the processing times: a solution with these two dummy jobs can
be translated into a solution with the two original dummy jobs by applying a
‘cross-over’ operation of the two involved machine schedules at time d̄2. Similarly,
dummy jobs can be split. Anyway, it is easily seen that each feasible solution
for this instance that uses no more than m machines corresponds to a feasible
solution for the RCPS with equal objective value.

D1

D2

D3

r1 r2 r3 d̄3 d̄2 d̄1

Fig. 1. Example of the dummy jobs

382 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

Arbitrary integral resource consumption
We now assume that the resource consumption pattern is constant for each job,
but it can be any arbitrary integral value greater than or equal to 1. Suppose that
Jj is some job that needs a constant amount of k ≥ 2 units of resource during
its execution. We capture this situation in the general framework by replacing
job Jj by job J ′

j and k − 1 additional dummy jobs. Here J ′
j is identical to Jj ,

except for its resource consumption, which we put equal to one. Furthermore,
each dummy job has processing time equal to pj, but it has no release date and
deadline, and it is independent of all other jobs, except for J ′

j : we force that all
these dummy jobs and J ′

j are started at the same time by means of a no-wait
constraint. It is easily seen that solving the resulting instance with unit resource
consumption is equivalent to solving the original instance.

If the resource consumption of job Jj is not constant over time, but can attains
arbitrary integral values, then we replace Jj by a set of new jobs with a constant
resource consumption pattern equal to 1, and we glue these together by no-wait
constraints, such that their joint resource consumption pattern is equivalent to
that of the original job Jj .

We can now use the approach of [1] to find the lower bound. Furthermore, we
can use the time-indexed formulation of [1] to look for a schedule with value equal
to the lower bound. Since the dummy jobs that replace an original job Jj are
glued together by no-wait constraints, and since the time-indexed formulation
uses variables xjt indicating whether job Jj starts at time t, we can restrict
ourselves to the original jobs (with their varying resource consumption patterns)
in the time-indexed formulation. Obviously, we must then adjust Constraints 6
to deal with the consumption patterns.

Note the close connection between the above RCPS problem and the cumu-
lative constraint (see the on line Global Constraint Catalog by Beldiceanu and
Demassey [5]. The cumulative constraint decrees that we should find for a given
set of jobs starting times, which obey the release dates and deadlines, such that
the total resource consumption should never exceed the available amount of
resource. To filter this constraint, we must check whether a feasible schedule ex-
ists for the above resource constraint project scheduling problem without initial
precedence constraints. Note that fixing the start time of some job can be easily
included in the model by adjusting the available amount resource.

3.2 Multiple Resources

We assume in this subsection that there are only two resources involved, but each
model can be easily generalized to deal with any number of resources. We first
transform it to an instance in which each job consumes only one resource during
its execution: this is easy to achieve by replacing a job that needs both resources
with two copies that only need one of the individual resources but are identical
otherwise. These copies are then tied together by no-wait constraints such that
they start at the same time. Next, we use the transformations described above to
achieve that each job uses exactly one amount of resource (either resource 1 or
2) at any time during its execution. We now have transformed the problem into

Column Generation for RCPS 383

a parallel machine scheduling problem in which there are two different sets of
identical machines; we assume that there are m1 (m2) machines corresponding
to resource 1 (2).

We apply the same solution strategy as Van den Akker et al. [1] We divide the
jobs and the machines into two groups, where jobs are only assigned to machines
of the right group, which is easily incorporated in the pricing problem. We again
minimize the total number of machines that is used, but we add the constraint
that we use at least m1 (m2) machines of group 1 (2): if we then find a solution
using no more than m1 + m2 machines, then we know that we do not use too
much of resources 1 and 2 separately. Note that we could have added constraints
decreeing that we use no more than m1 (m2) machines of group 1 (2) instead,
but then we run into problems when we look for a feasible solution of the LP-
relaxation to start with. Finally, we add some ‘empty’ columns, such that these
two constraints can always be met.

As an illustration, we work things out for the case in which there are two re-
sources, and each job Jj has a constant resource consumption pattern, requiring
either 0 or 1 unit of resource 1 and 2. We assume for the ease of exposition that
initially there are no precedence constraints. We denote the set of jobs requiring
resource 1 only by R1; similarly, we use R2 to denote the jobs requiring resource
2 only. We denote the set of jobs that need both resources by R1,2; these jobs
will be split into two operations. These two operations need only one resource
and are connected by a no-wait constraint. We use S and V to denote the set of
machine schedules for resources 1 and 2, and we use xs and yv as binary decision
variables. Moreover, we use ajs and bjv to indicate whether job Jj is included in
machine schedules s and v for resource 1 and 2, respectively. This leads to the
following ILP-formulation, where with a little abuse of notation, a job Jj ∈ R1,2
in fact consists of its two operations.

min
∑

s∈S

xs +
∑

v∈V

yv

subject to ∑

s∈S

ajsxs = 1, for each j ∈ R1 ∪ R12 (7)
∑

v∈V

bjvyv = 1, for each j ∈ R2 ∪ R12 (8)
∑

s∈S

Sjsxs −
∑

v∈V

Sjvyv = 0, for each j ∈ R1,2 (9)
∑

s∈S

xs ≥ m1 (10)
∑

v∈V

yv ≥ m2 (11)

xs, yv ∈ {0, 1}, for each s ∈ S and v ∈ V.

When we solve the LP-relaxation by column generation, we find that the reduced
cost of a schedule s ∈ S is equal to

c′s = 1 − λ0 −
∑

j∈R1∪R12

ajsλj −
∑

j∈R1,2

δjSjs;

384 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

here λ0 is the dual multiplier corresponding to Constraint 10, λj (j ∈ R1) are
the dual multipliers corresponding to the Constraints 7, and δj (j ∈ R1,2) are
the dual multipliers corresponding to the Constraints 10. The reduced cost of
machine schedule v ∈ V is computed in an equivalent way. It is readily verified
that the pricing problem is similar to the one of [1], which implies that the local
search procedure and time-indexed formulation to solve it can still be applied.
Furthermore, we can compute an intermediate lower bound as follows. Let c∗1
denote the optimal value of the pricing problem for resource 1. If we fill in c′s ≥ c∗1
in the formula of the reduced cost, then we find that

1 ≥ c∗1 + λ0 +
∑

j∈R1∪R12

ajsλj +
∑

j∈R1,2

δjSjs.

Hence,

∑

s∈S

xs ≥
∑

s∈S

⎡

⎣c∗1 + λ0 +
∑

j∈R1∪R12

ajsλj +
∑

j∈R1,2

δjSjs

⎤

⎦xs =

(c∗1 + λ0)
∑

s∈S

xs +
∑

j∈R1∪R12

λj

∑

s∈S

[ajsxs] +
∑

j∈R1,2

δj

∑

s∈S

Sjsxs =

(c∗1 + λ0)
∑

s∈S

xs +
∑

j∈R1∪R12

λj +
∑

j∈R1,2

δj

∑

s∈S

Sjsxs.

Similarly, we find that
∑

v∈V

yv ≥ (c∗2 + μ0)
∑

v∈V

yv +
∑

j∈R2∪R12

μj −
∑

j∈R1,2

δj

∑

v∈V

Sjsyv;

here μ0 is the dual multiplier corresponding to Constraint 11, μj (j ∈ R1 ∪ R12)
is the dual multiplier corresponding to Constraint 8, and c∗2 is the outcome value
of the pricing problem for resource 2. If we add these two inequalities up, then
the terms containing Sjs cancel out, because of Constraints 9. Rearranging the
terms, we find that

(1 − c∗1 − λ0)
∑

s∈S

xs + (1 − c∗2 − μ0)
∑

v∈V

yv ≥
∑

j∈R1∪R12

λj +
∑

j∈R2∪R12

μj .

If 1 − c∗1 − λ0 = 1 − c∗2 − μ0, then we can divide by this term and find a
lower, provided that 1 − c∗1 − λ0 > 0, which issue we discuss later. Suppose
that 1− c∗1 −λ0 > 1− c∗2 −μ0; the other case can be dealt with in the same way.
Then we add to this inequality (c∗2 − c∗1 + μ0 − λ0) times inequality 11, and we
find the intermediate lower bound

∑

s∈S

xs +
∑

v∈V

yv ≥
((c∗2 − c∗1 + μ0 − λ0)m2 +

∑
j∈R1∪R12

λj +
∑

j∈R2∪R12
μj

(1 − c∗1 − λ0)
.

What is left to show is that (1 − c∗1 − λ0) > 0. We know that c∗1 ≤ 0, since any
column that is used in the current LP solution has zero reduced cost. Moreover,

Column Generation for RCPS 385

if both λ0 and μ0 are positive, then both constraints are binding, which implies
that we have found a solution with value m1 + m2, which means that we can
stop. Hence, at least one of λ0 and μ0 is zero, which implies that the maximum
of 1 − c∗1 − λ0 and 1 − c∗2 − μ0 is positive.

Finally, we look at the problem of finding a feasible solution with this value.
It is easily verified that the time-indexed formulation of [1] to find a feasible so-
lution can be used, but we must split the m machines into two sets representing
the m1 and m2 units of resources 1 and 2, respectively.

Machine scheduling with operators
A special case of the above is the situation in which each job needs an operator
to start it up, which takes 1 time unit per job. Hence, we should not start more
jobs at any moment than there are operators available. We can model the op-
erators as a second resource, but alternatively we can add the starting times to
the machine schedules and force the restriction on the number of operators by
adding constraints. Here, we work out the second option, which has the addi-
tional advantage that we can model a varying number of available operators. We
again assume without loss of generality that there are no additional precedence
constraints. We use ost to indicate whether a job starts at time t in machine
schedule s; we use Opt to denote the number of operators available at time t.
We then arrive at the ILP-formulation:

min
∑

s∈S

xs

subject to ∑

s∈S

ajsxs = 1, for each j = 1, . . . , n

∑

s∈S

ostxs ≤ Opt, for all t = 0, . . . , T − 1 (12)

xs ∈ {0, 1}, for each s ∈ S,

where T denotes a given time horizon. The reduced cost of a machine schedule
s is then equal to

c′s = 1 −
n∑

j=1

ajsλj −
T∑

t=0

ostπt,

where πt denotes the dual variable corresponding to Constraints 12. The corre-
sponding pricing problem can be minimized using the local search procedure and
the time-indexed formulation of [1]. Furthermore, since πt ≤ 0 (t = 0, . . . , T), it
is readily determined that

⎡

⎣
n∑

j=1

λj +
T∑

t=0

πtOpt

⎤

⎦ /(1 − c∗)

is an intermediate lower bound on the outcome of the LP-relaxation.

386 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

Finally, we can use the time-indexed formulation of [1] to find a solution with
value equal to the lower bound, but we have to add constraints to ensure that
the required number of operators is no more than the available number at any
time

n∑

j=1

xjt ≤ Opt, for all t = 0, . . . , T − 1.

3.3 Computational Experiments

We tested our hybrid algorithm for the case with one type of resource, unit re-
source consumption, and variable resource availability over time. We consider
the instances from Table 1. Besides the basic scenario with full resource avail-
ability, we consider two scenarios for each instance. In the first scenario, there
is one pile of dummy jobs (reflecting the resource unavailability) where the pile
is located around half of the estimated makespan of the schedule. In the sec-
ond scenario there are two shorter piles around one third and two third of the
estimated makespan, respectively. In both scenarios the maximum amount of
unavailable resources is about �m

2 	. The first scenario is denoted by Hi-T1 and
the second by Hi-T2. We report the number of times out of 10 that an optimum
was found (‘# success’), and we report the average and maximum amount of
time in seconds needed for the successful runs (‘Avg t’ and ‘Max t’). For the
hybrid algorithm, we denote by (‘#LB=OPT’) the number of times that we
could prove that the lower bound equalled the optimum. Next, we report the
average and maximum time needed to find the lower bound for the successful
runs (‘Avg t LB’ and ‘Max t LB’). By (‘Avg #ILP’ and ‘Max #ILP’), we denote
the number of times that we solved the ILP formulation of the pricing problem;
this was conducted after each series of 50 runs of the local search algorithm,
since we wanted to find out whether the intermediate lower bound could decide
the problem already, and whenever the local search algorithm could not find an
improving column. Finally, we report on the increase of the lateness because of
resource unavailability (Avg incL and Max incL, both in percentages). Again,
the maximal running time is 30 minutes. The results are given in Table 2. Our
computational results indicate that the resource unavailability increases the run-
ning time of the algorithm but that in most cases the algorithm is still able to
solve the problem within 30 minutes. For the largest instances (of type 3), we
were able to compute the lower bound but could not complete the ILP within
30 minutes. In most cases the scenario with one pile is more difficult than the
one with two piles. Finally, most cases were solved and moreover, for all these
cases the lower bound equals the optimum, which emphasizes the strength of
our lower bound.

We further have tested the suitability of using the destructive lower bounding
technique for filtering the cumulative constraint. Hereto, we conducted some
experiments to find out the time it take to test whether a schedule with Lmax ≤ L
can exist for a specific value of L. Given the optimum L∗ of the instance, we
checked for the first two instances of Table 2 whether a schedule can exist with

Column Generation for RCPS 387

Table 2. Results of the hybrid algorithm with resource unavailability

Avg t Max t #LB Avg t Max t Avg Max Avg Max
success =OPT LB LB #ILP #ILP incL incL

H0 10 30 62 10 27 60 8 43

H0-T1 9 41 81 9 35 72 20 94 42 69

H0-T2 10 39 71 10 32 62 19 79 27 54

H1 10 191 336 10 108 156 16 45

H1-T1 9 166 207 9 83 119 13 38 37 45

H1-T2 10 437 1238 10 190 926 15 30 42 52

H2 9 183 302 9 117 217 16 68

H2-T1 9 297 497 9 137 383 14 20 87 107

H2-T2 10 340 582 10 112 158 11 16 125 155

H3 9 1033 1579 9 534 640 45 78

H3-T1 6 1393 1736 6 578 730 55 75 29 33

H3-T2 9 1288 1473 9 642 927 52 88 35 40

H4 10 54 173 10 42 153 16 92

H4-T1 9 76 121 9 56 103 29 91 13 28

H4-T2 9 84 165 9 60 139 34 97 18 37

H5 9 26 77 9 24 76 13 76

H5-T1 9 61 139 9 47 135 17 46 112 179

H5-T2 10 77 214 10 59 205 10 31 144 258

Lmax ≤ L, where L = L∗−8, L∗−4, L∗−2, L∗−1, L∗, L∗+1, L∗+2, L∗+4, L∗+8.
Note that we computed each test from scratch. We further have added the time
needed to establish the lower bound of L∗ in the column with header LB − time.
The average running times (in seconds) are displayed in Table 3. The running
times do not show a clear picture. In many cases, showing infeasibility becomes
more difficult when approaching L∗, but for the instances of type 2 the toughest
is showing infeasibility of L∗ − 2. It clearly becomes easier to conduct the test
for values L that are greater than or equal to L∗ for bigger values of L.

4 Other Extensions

4.1 Set-Up Times and Change-Over Times

So far, we have assumed that as soon as a machine has finished a job, it can start
the next one. In many applications, however, there can be a mandatory delay,
which is called a set-up time or a change-over time. A set-up time just depends
on the job that is to be started; the change-over time depends on both the job
that is to be started and the job that has just been completed. Here we assume
that the change-over times obey the triangle inequality.

We first deal with the set-up times, since this is fundamentally easier than
the case with change-over times. The basic idea is to add the set-up time to the
processing time; we then consider the first part of processing the job as setting
it up. We must then update the release date by subtracting the set-up time

388 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

Table 3. Running times for testing feasibility

type L*-8 L*-4 L*-2 L*-1 L* L*+1 L*+2 L*+4 L*+8 LB-time

0 T1 5.7 7.6 7.3 10.5 3.7 2.5 2 1.6 1.3 27.4

0 T2 5.8 4.7 6.7 7.4 5.7 2.7 2.4 1.6 1.3 28.5

1 T1 15.5 15.2 17.1 19.8 8.5 5.8 4.8 3.7 3.1 78.3

1 T2 13.8 13 14 17.8 14 7.8 5.6 3.9 3.2 127.8

2 T1 22.6 20.4 30.8 25.9 13.4 8.9 7.4 6.3 3.4 106.3

2 T2 25.8 25 43.6 26.9 10.9 9.2 8.7 5.8 4.7 114.2

3 T1 123 407.1 171.1 229.3 60.2 35.8 24.9 19.9 11.6 558.1

3 T2 85.4 125.9 144.6 137.6 161 36.9 27.5 17.6 11.8 456.6

4 T1 .1 0 0 0 5.2 3.5 2.5 1.9 1.5 11.4

4 T2 0.6 0 0 12.9 15.5 3.4 2.8 2.4 1.7 45.1

5 T1 6 6.3 6.7 15.2 7.6 2.8 2.1 1.8 1.3 42.5

5 T2 6.2 6.7 8 8.4 2.9 2.7 2.2 1.4 1.2 36.5

from it, which might lead to a negative release date. We may further have to
update the right-hand-sides of the generalized precedence constraints, but this
is simply a matter of administration. An optimal solution for the problem with
set-up times is then readily obtained from the optimal solution for the adjusted
instance without set-up times.

Sequence-dependent change-over times are much harder. We incorporate this
type of constraint in the column generation: we look for single machine schedules
that obey the release dates, deadlines, and the change-over times. This implies
that the ILP formulation remains the same; we only must add another constraint
to the pricing problem. It is easily dealt with in the local search procedure
that Van den Akker et al. use to solve the pricing problem approximately, but
it cannot be incorporated in the time-indexed formulation to solve the pricing
problem. If we want to solve the pricing problem then, we might use branch-and-
bound. Moreover, we cannot use the time-indexed formulation of [1] to find an
optimal solution. Very recently, Pereira Lopes and Valério de Carvalho [10] have
presented a branch-and-price algorithm for this problem, but with an additive
objective function.

4.2 Machine Unavailability and Planned Maintenance

Machine unavailabilities are similar to varying resource availabilities, but they
are more restrictive, since we put a label on a machine with its unavailability
pattern instead of aggregating the capacities of all machines. One way to tackle
this problem is to label the machines and determine for each one a separate set
of machine schedules, from which we must select one. An alternative and quicker
way is to add dummy jobs to the instance which correspond to unavailabilities.
In a correct solution, we will have for each unavailability pattern that a feasible
machine schedule will be selected that contains the dummy jobs corresponding
to this unavailability pattern, which gives us a schedule for the corresponding
machine. In case of a planned maintenance, we know that the machine is being

Column Generation for RCPS 389

repaired for a given time, but we do not know when this time period starts: we
then give the dummy job a release date and deadline corresponding to the earliest
start time and the latest completion time of the repair. The only difficulty left
is to ensure that a given set of dummy jobs corresponding to the unavailabilities
and repairs of a given machine all end up in the same, selected machine schedule.
Just like in the previous subsection, we put these constraints in the pricing
problem. These additional constraints to a machine schedule are easily being
dealt with in the local search procedure. When we want to solve the pricing
problem to optimality, we can use the time-indexed formulation, but we must
add a constraint for each pair of jobs that must be executed on the same machine
or on different machines: if Ji and Jj are to be executed on the same machine,
then we add the constraint

d̄i−pi∑

t=ri

xit =
d̄j−pj∑

t=rj

xjt;

if Ji and Jj must go on different machines, then we require

d̄i−pi∑

t=ri

xit +
d̄j−pj∑

t=rj

xjt ≤ 1.

Note that we do not have to solve a pricing problem for each machine separately.
Since each job has to be executed, there will be one machine ‘executing’ the set
of dummy jobs that we introduced to mimic the unavailability pattern of this
machine. Unfortunately, after having determined the lower bound, we cannot
straightaway use the time-indexed formulation of [1] to look for a solution with
equal value, since we must force the set of dummy jobs representing the machine
unavailability pattern on one machine that does not execute any other dummy
job. We can use a similar formulation in which we distinguish between the ma-
chines by using variables xijt indicating that job Jj starts at time t on machine
i, but this will blow up the model tremendously, since we cannot aggregate the
machines and require that at most m are used then anymore.

5 Conclusions and Future Research

We have described how the framework by Van den Akker et al. [1] can be used
to solve a number of basic resource project scheduling problems. We further
have shown how to incorporate change-over times and machine maintenance.
Except for the case with change-over times, we can use the same tool kit as
in [1] to compute the lower bound. This lower bound always coincided with
the optimum in the computational experiments conducted in [1], and we found
the same phenomenon in our experiments for the case of the strongly related
problem with a varying amount of resources available. We are working on more
elaborate computational experiments including other cases. When it comes to
finding a solution with value equal to the lower bound, we can in many cases

390 J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

use the time-indexed formulation of [1] in which we specify the wanted optimum
beforehand. Van den Akker et al. conjectured that this is presumably due to the
preprocessing step within CPLEX, which suggest that the technique of constraint
programming should be able to find such a solution more quickly, or show that it
does not exist. Constraint programming seems to be the most eminent candidate
to look for a solution with value equal to the lower bound for the problems with
machine unavailabilities and change-over times. This is one of the directions that
we work on.

References

1. J.M. van den Akker, J.A. Hoogeveen, and J.W. van Kempen (2006). Parallel
machine scheduling through column generation: minimax objective functions (ex-
tended abstract). Y. Azar and T. Erlebach (Eds.) ESA 2006. LNCS 4168, Springer,
648–659.

2. J.M. van den Akker, J.A. Hoogeveen, and S.L. Van de Velde (2005). Ap-
plying column generation to machine scheduling. G. Desaulniers, J. Desrosiers, and
M.M. Solomon (eds.). Column Generation, Springer, 303–330.

3. P. Baptiste, C. Le Pape, and W. Nuijten (2001). Constraint-based schedul-
ing: Applying constraint programming to scheduling problems. Kluwer Academic
Publishers, Dordrecht, The Netherlands.

4. M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali (1990). Linear Programming
and Network Flows, Wiley, New York.

5. N. Beldiceanu and S. Demassey (2007). Global Constraint Catalog
www.emn.fr/x-info/sdemasse/gccat/index.html

6. P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch (1999).
resource-constrained project scheduling: Notation, classification, models, and
methods. European Journal of Operational Research 112, 3–41.

7. P. Brucker and S. Knust (2000). A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal of Operational
Research 127, 355–362.

8. P. Brucker and S. Knust (2003). Lower bounds for resource-constrained project
scheduling problems. European Journal of Operational Research 149, 302–313.

9. A. Cesta, A. Oddi, and S.F. Smith (2002). A constraint-based method for
project scheduling with time windows. Journal of Heuristics 8, 109–136.

10. M.J. Pereira Lopes and J.M. Valério de Carvalho (2007). A branch-and-
price algorithm for scheduling parallel machines with sequence dependent setup
times. European Journal of Operational Research 176, 1508–1527.

Author Index

Baatar, Davaatseren 1
Beck, J. Christopher 112, 303
Beldiceanu, Nicolas 141, 214
Boland, Natashia 1
Brand, Sebastian 1

Conrad, Jon 16
Côté, Marie-Claude 29

Dechter, Rina 171
Deville, Yves 186, 260
Di Gaspero, Luca 44
di Tollo, Giacomo 44
Diepen, Guido 376
Dooms, Grégoire 59
Dupont, Pierre 186, 260

Fourdrinoy, Olivier 71

Gendron, Bernard 29
Gomes, Carla P. 16
Grégoire, Éric 71

Hadžić, Tarik 84
Hnich, Brahim 229
Hoogeveen, J.A. 376
Hooker, J.N. 84
Huguet, Marie-José 99

Karoui, Wafa 99
Katriel, Irit 59
Kéri, András 127
Kis, Tamás 127
Kovács, András 112

Leventhal, Daniel H. 275
Lopez, Pierre 99
Lorca, Xavier 141

Manlove, David F. 155
Marinescu, Radu 171
Mazure, Bertrand 71

Mercier, Luc 275
Monette, Jean-Noël 186

Naanaa, Wady 99, 200
Naveh, Yehuda 244

O’Malley, Gregg 155

Pesant, Gilles 361
Poder, Emmanuel 214
Prestwich, Steven 229
Prosser, Patrick 155

Régin, Jean-Charles 260
Roli, Andrea 44
Rossi, Roberto 229
Rousseau, Louis-Martin 29

Sabato, Sivan 244
Sabharwal, Ashish 16
Säıs, Lakhdar 71
Schaerf, Andrea 44
Schaus, Pierre 260
Sellmann, Meinolf 275
Smaus, Jan-Georg 288
Stuckey, Peter J. 1
Suter, Jordan 16

Tarim, S. Armagan 229
Terekhov, Daria 303
Trick, Michael A. 332, 346

Unsworth, Chris 155

van den Akker, J. Marjan 376
van Hoeve, Willem-Jan 16

Xia, Yu 318

Yildiz, Hakan 332, 346

Zanarini, Alessandro 361

	Title
	Preface
	Conference Organization
	Table of Contents
	Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices: CP and IP Approaches
	Introduction
	Problem Specification and Related Work
	Existing Integer Programming Formulations
	The Unit Radiation Model
	The Leaf-Implicit Model

	New Constraint Programming and Integer Programming Approaches
	The Direct CP Model
	The Counter Model

	Benchmarks
	Concluding Remarks

	Connections in Networks: Hardness of Feasibility Versus Optimality
	Introduction
	Connection Subgraph Problem
	NP-Completeness and Hardness of Approximation
	Mixed Integer Linear Programming Model
	Computational Hardness Profiles
	Summary and Discussion

	Modeling the Regular Constraint with Integer Programming
	Introduction
	Literature Review
	MIP Formulations
	CP Formulations
	Network Flow Theory

	MIP Regular Constraint
	Case Study
	Problem Definition
	A Classical MIP Model
	A MIP Regular Model
	Computational Results

	Conclusion

	Hybrid Local Search for Constrained Financial Portfolio Selection Problems
	Introduction
	Problem Definition
	Related Work
	A Hybrid Local Search Solver for Portfolio Selection
	Search Space and Cost Function
	Neighbourhood Structure
	Initial Solution Construction
	Local Search Techniques

	Experimental Analysis
	Benchmark Instances
	Experimental Setting of the Solvers
	Comparison with Previous Results
	Search Space Analysis

	Conclusions and Future Work

	The “Not-Too-Heavy Spanning Tree” Constraint
	Introduction
	Set and Graph Variables
	Our Results

	Simple Graph Constraints
	The Subgraph(T,G) Constraint
	The Tree(T) Constraint

	WBST with Fixed Graph and Edge Weights
	A Preprocessing Step
	Analysis of g
	Filtering the Domains of T and I

	WBST with Non-fixed Tree and Graph
	Analysis of D(G)
	Filtering

	WBST When Only V(G) and V(T) Are Fixed
	NP-Hardness of the Most General Case
	On Optimization Constraints

	Eliminating Redundant Clauses in SAT Instances
	Introduction
	Technical Background
	Redundancy in SAT Instances
	Experimental Results
	Related Work
	Conclusions

	Cost-Bounded Binary Decision Diagrams for 0-1 Programming
	Binary Decision Diagrams
	Previous Work
	Projection and Postoptimality Analysis
	Cost-Bounded BDDs
	Sound BDDs
	Pruning
	Contraction
	Computational Results
	Conclusion

	YIELDS: A Yet Improved Limited Discrepancy Search for CSPs
	Introduction and Motivations
	Background
	The Proposed Approach
	Overcoming the Limits of LDS
	The YIELDS Algorithm
	Illustrative Examples

	Experimental Results
	Related Works
	Conclusion and Further Work

	A Global Constraint for Total Weighted Completion Time
	Introduction
	Definitions and Notations
	Related Literature
	Propagating Total Weighted Completion Time on a Unary Resource
	Computing a Lower Bound
	Incrementally Recomputing the Lower Bound
	From a Lower Bound to Domain Filtering
	Computational Complexity
	Implementation Details

	Computational Experiments
	Extensions to Other Scheduling Models
	Extension to Cumulative Resources
	Extension to Multiple Resource Problems

	Conclusions

	Computing Tight Time Windows for RCPSPWET with the Primal-Dual Method
	Introduction
	Preliminaries
	Network Computations
	Updating the Primal and Dual Optimal Solutions
	Tightening the Domains of Variables

	Exact Algorithm Based on Branch and Bound
	Computational Results
	Results on UBO20 Instances
	Results on UBO50 Instances

	Conclusions

	Necessary Condition for Path Partitioning Constraints
	Introduction
	Preliminaries
	K-NDP Problem in Directed Acyclic Graphs
	K-NDP Problem in Non-acyclic Graphs
	Estimating the Number of Paths Partitioning a scc
	Estimating the Number of Paths Between Two scc's

	A path Partitioning Constraint
	Feasibility
	Filtering Algorithm

	Conclusion

	A Constraint Programming Approach to the Hospitals / Residents Problem
	Introduction
	Definitions and Fundamental Results
	A Cloned Model
	A Direct CSP-Based Model
	A Specialised n-Ary Constraint
	Preliminaries
	Complexity
	Searching for All Solutions

	Computational Experience
	Motivation: Side-Constraints
	Conclusions and Future Work

	Best-First AND/OR Search for 0/1 Integer Programming
	Introduction
	Background
	Integer Linear Programming
	AND/OR Search Spaces for 0/1 Integer Linear Programs

	Algorithms Exploring the Context-Minimal AND/OR Graph
	Depth-First AND/OR Branch-and-Bound Search
	Best-First AND/OR Search

	Dynamic Variable Orderings
	Experiments
	MIPLIB
	Combinatorial Auctions
	Uncapacitated Warehouse Location Problems
	MAX-SAT Problems

	Conclusion

	A Position-Based Propagator for the Open-Shop Problem
	Introduction
	The One Machine Non-preemptive Problem
	Problem Modelling in CP
	Constraints

	The Propagator
	Shaving on Position Variables
	Bounding the Earliest Completion Time of a Task Subset

	Experiments
	Conclusion

	Directional Interchangeability for Enhancing CSP Solving
	Introduction
	Definitions and Notations
	Directional Interchangeability (DI)
	Exploiting Directional Interchangeability
	The Search
	Constraint Propagation
	An Example

	Experimental Results
	Related Work
	Conclusion

	A Continuous Multi-resources cumulative Constraint with Positive-Negative Resource Consumption-Production
	Introduction
	The Piecewise Linear cumulatives_pwl Constraint
	Task Model
	The Piecewise Linear Cumulative cumulatives_pwl

	Minimum and Maximum Cumulated Resource's Profiles
	Earliest and Latest Schedules of a Task T
	Compulsory Part of a Non--negative Task
	Envelope of a Non--negative Task
	Minimum and Maximum Task's Profiles of Any Task T

	Computing All the Minimum and Maximum Cumulated Resource's Profiles Using a Sweep Algorithm
	Minimum and Maximum Cumulated Resource's Profiles
	Sweep Algorithm

	Conclusion

	Replenishment Planning for Stochastic Inventory Systems with Shortage Cost
	Introduction
	Problem Definition and (Rn,Sn) Policy
	Stochastic Cost Component in Single-Period Newsvendor
	Stochastic Cost Component in Multiple-Period Newsvendor

	Deterministic Equivalent CP Formulation
	Comparison of the CP and MIP Approaches
	Conclusions

	Preprocessing Expression-Based Constraint Satisfaction Problems for Stochastic Local Search
	Introduction
	Expression-Based CSPs
	System Architecture
	Internal CSP Representation
	The Search Scheme
	The Search Space

	Model Processing for SLS
	Transformation to Negation Normal Form
	Reducing the Search Space Size
	Dealiasing
	Pruning -- Removing Tautologies and Contradictions
	Combining Processing Methods

	Experimental Results
	Artificial Example
	`Still Life' CSP
	Processor Verification
	Random Expression-Based CSPs
	Phase Transition in Random Expression-Based Problems

	Summary

	The Deviation Constraint
	Introduction
	Background and Notations
	Naive Implementation
	Filtering of D
	Filtering on X
	Bound Consistency for DEVIATION
	Relation Between SPREAD and DEVIATION
	Experimental Results
	Conclusion

	The Linear Programming Polytope of Binary Constraint Problems with Bounded Tree-Width
	Introduction
	Binary Constraint Satisfaction
	The Support Formulation
	Tree-Structured Binary Constraint Programs
	Exploiting Bounded Tree-Width
	Numerical Results for Augmented BCPs with a Linear Objective
	Summary and Future Work

	On Boolean Functions Encodable as a Single Linear Pseudo-Boolean Constraint
	Introduction
	Preliminaries
	Inclusion Results
	Counting Boolean Functions
	Duality
	Representing a DNF as LPB
	Determining the Order of Coefficients
	Decomposing a DNF
	Composing LPBs

	Conclusion

	Solving a Stochastic Queueing Control Problem with Constraint Programming
	Introduction
	Problem Description
	Problem Definition
	Berman et al.'s Heuristic

	Constraint Programming Models
	If-Then Model
	PSums Model
	Dual Model

	Shaving
	Experimental Results
	Comparison of Constraint Programming Models
	P1 vs. the Best Constraint Programming Approach

	PSums-P1 Hybrid
	Discussion
	Lack of Back-Propagation
	Differences in the Constraint Programming Models

	Related Work and Possible Extensions
	Conclusions

	Constrained Clustering Via Concavity Cuts
	Introduction
	The Mathematical Model
	The Solutions
	General Properties of the Mathematical Model

	The Concave Cutting Algorithm
	Basic Ideas of Tuy's Cuts
	The Adapted Tuy's Cutting Algorithm

	Numerical Examples

	Bender’s Cuts Guided Large Neighborhood Search for the Traveling Umpire Problem
	Introduction
	Problem Description
	Exact Solution Approaches
	Greedy Matching Heuristic and a Bender's Based Modification
	Bender's Cuts and Large Neighborhood Search
	Generating Bender's Cuts
	Very Large Neighborhood Search

	Computational Results
	Instance Description
	Summary of Results
	Finding a Feasible Solution
	Improving the Solution with VLNS

	Conclusion

	A Large Neighborhood Search Heuristic for Graph Coloring
	Introduction
	Local Search for Graph Coloring
	Moves and Neighborhoods
	Size of the Neighborhoods
	Graph Cuts
	Finding the Optimal Swap Move
	Finding the Optimal Expansion Move

	Algorithms
	Swap-Move Algorithm
	Expansion-Move Algorithm
	Check-Bipartite Algorithm
	Expansion-Swap Algorithm
	Finding a Maximum Cut

	Experimental Results
	Implementation Details
	Summary of Results

	Conclusion

	Generalizations of the Global Cardinality Constraint for Hierarchical Resources
	Introduction
	Preliminaries
	Constraint Satisfaction Problem
	Network Flows

	Nested Global Cardinality Constraint
	Graph Representation
	Domain Consistency and Propagation Algorithm
	Complexity

	Further Generalization
	Graph Representation
	Domain Consistency and Propagation Algorithm

	Experimental Results
	Expressing Preferences
	Conclusions

	A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems
	Introduction
	Reviewing the Basic Method
	The RCPS Problem
	One Resource
	Multiple Resources
	Computational Experiments

	Other Extensions
	Set-Up Times and Change-Over Times
	Machine Unavailability and Planned Maintenance

	Conclusions and Future Research

	Author Index

